

Дніпровський державний медичний університет Донецький національний медичний університет

Здоров'я дитини Child's Health

Спеціалізований рецензований науково-практичний журнал Заснований у липні 2006 року Періодичність виходу: 8 разів на рік

Том 20, № 7, 2025

Включений в наукометричні і спеціалізовані бази даних **Scopus**,

HБУ ім. В.І. Вернадського, «Україніка наукова», «Наукова періодика України», JIC index, Ulrichsweb Global Serials Directory, CrossRef, WorldCat, Google Scholar, ICMJE, SHERPA/RoMEO, NLM-catalog, NLM-Locator Plus, OpenAIRE, BASE, ROAD, DOAJ, Index Copernicus, EBSCO, OUCI

Спеціалізований рецензований науково-практичний журнал

Tom 20, № 7, 2025

ISSN 2224-0551 (print) ISSN 2307-1168 (online)

Співзасновники:

Дніпровський державний медичний університет, Донецький національний медичний університет, Заславський О.Ю.

> Завідуюча редакцією Купріненко Н.В.

Розміщення реклами та інформації про лікарські засоби v_iliyna@ukr.net

Журнал внесено до переліку наукових фахових видань України, в яких можуть публікуватися результати дисертаційних робіт на здобуття наукових ступенів доктора і кандидата наук. Наказ МОН України від 23.12.2022 р. № 1166. Категорія А

Рекомендується до друку та до поширення через мережу Інтернет рішенням ученої ради Дніпровського державного медичного університету від 27.11.2025 р., протокол № 4

Реєстрація: ідентифікатор медіа R30-04853. Рішення Національної ради України з питань телебачення та радіомовлення № 1718 від 23.05.2024

Українською та англійською мовами

Формат 60х84/8. Ум. друк. арк. 8,37 Зам. 2025-ch-149. Тираж 12 000 пр.

Адреса редакції:

E-mail: medredactor.vdz@gmail.com (Тема: До редакції журналу «Здоров'я дитини») Тел.: +38 (067) 325-10-26

> www.mif-ua.com https://childshealth-journal.com

Видавець Заславський О.Ю. zaslavsky@i.ua Свідоцтво суб'єкта видавничої справи ДК № 2128 від 13.05.2005

Друк: ТОВ «Ландпресс»

Головний редактор Абатуров Олександр Євгенович

(Дніпро, Україна)

Редакційна колегія

Бекетова Г.В. (Київ, Україна)

Больбот Ю.К. (Дніпро, Україна)

Волосовець О.П. — заступник головного

редактора (Київ, Україна)

Гнатейко 0.3. (Львів, Україна)

Дегтяр В.А. (Дніпро, Україна)

Іванов Д.Д. (Київ, Україна)

Карімджанов І.А. (Узбекістан)

Квашніна Л.В. (Київ, Україна)

Крамарьов С.О. (Київ, Україна)

Кривопустов С.П. (Київ, Україна)

Крючко Т.О. (Полтава, Україна)

Леженко Г.О. (Запоріжжя, Україна)

Овчаренко Л.С. (Запоріжжя, Україна)

Омельченко Л.І. (Київ, Україна)

Хайтович М.В. (Київ, Україна)

Чернишова О.Є. (Лиман, Україна)

Guggenbichler J. Peter (Німеччина)

Landrigan Philip J. (США)

Valenta Rudolf — заступник головного

редактора (Австрія)

Vasylyeva Tetyana L. (США)

Yulish Yevgeniy I. — заступник головного

редактора (Ізраїль)

Наукові консультанти

Антипкін Ю.Г. (Київ, Україна)

Аряєв М.Л. (Одеса, Україна)

Бережний В.В. (Київ, Україна)

Бондаренко І.М. (Дніпро, Україна)

Відповідальний секретар

Нікуліна А.О. (Дніпро, Україна)

Редакція не завжди поділяє думку автора публікації. Відповідальність за вірогідність фактів, власних імен та іншої інформації, використаної в публікації, несе автор. Передрук та інше відтворення в якій-небудь формі в цілому або частково статей, ілюстрацій або інших матеріалів дозволені тільки при попередній письмовій згоді редакції та з обов'язковим посиланням на джерело. Усі права захищені.

© Дніпровський державний медичний університет, 2025 © Донецький національний медичний університет, 2025

© Заславський 0.Ю., 2025

Child's Health

Specialized reviewed practical scientific journal

Volume 20, № 7, 2025

ISSN 2224-0551 (print) ISSN 2307-1168 (online)

Co-founder:

Dnipro State Medical University, Donetsk National Medical University, Zaslavsky 0.Yu.

> Managing Editor Kuprinenko N.V.

Advertising and Drug Promotion Department v_iliyna@ukr.net

The journal is included in the new List of scientific publications of the Higher attestation Commission, which can publish results of dissertations on competition of scientific degrees of doctor and candidate of Sciences. Order of the MES from 23.12.2022 № 1166

Recommended for publication and circulation via the Internet on the resolution of Scientific Council of Dnipro State Medical University dated 27.11.2025, Protocol № 4

Registration: Media identifier R30-04853. Decision of the National Council of Ukraine on Television and Radio Broadcasting No 1718 dated 23.05.2024

In Ukrainian and English

Folio 60x84/8. Printer's sheet 8.37. Order 2025-ch-149. Circulation 12 000 copies.

Editorial office address:

E-mail: medredactor.vdz@gmail.com (Subject: Child's Health Journal) Tel.: +38 (067) 325-10-26 www.mif-ua.com

https://childshealth-journal.com

Publisher Zaslavsky 0.Yu. zaslavsky@i.ua Publishing entity certificate ДК № 2128 dated 13.05.2005

Print: Landpress Ltd.

Editor-in-Chief

Aleksandr Abaturov (Dnipro, Ukraine)

Editorial Board

Beketova H.V. (Kyiv, Ukraine)

Bolbot Yu.K. (Dnipro, Ukraine)

Volosovets O.P. — Deputy Editor-in-Chief (Kyiv, Ukraine)

Gnateiko O.Z. (Lviv, Ukraine)

Digtyar V.A. (Dnipro, Ukraine)

Ivanov D.D. (Kyiv, Ukraine)

Karimdjanov Ilkhamdjan A. (Uzbekistan)

Kvashnina L.V. (Kyiv, Ukraine)

Kramarov S.O. (Kyiv, Ukraine)

Krivopustov S.P. (Kyiv, Ukraine)

Kryuchko T.A. (Poltava, Ukraine)

Lezhenko G.O. (Zaporizhzhia, Ukraine)

Ovcharenko L.S. (Zaporizhzhia, Ukraine)

Omelchenko L.I. (Kyiv, Ukraine)

Khaitovych M.V. (Kyiv, Ukraine)

Chernyshova O.Ye. (Lyman, Ukraine)

Guggenbichler J. Peter (Germany)

Landrigan Philip J. (USA)

Valenta Rudolf — Deputy Editor-in-Chief (Austria)

Vasylyeva Tetyana L. (USA)

Yulish Yevgeniy I. — Deputy Editor-in-Chief (Israel)

Academic Advisor

Antipkin Yu.H. (Kyiv, Ukraine)

Aryayev M.L. (Odesa, Ukraine)

Berezhny V.V. (Kyiv, Ukraine)

Bondarenko I.M. (Dnipro, Ukraine)

Executive Secretary

Nikulina A.O. (Dnipro, Ukraine)

The editorial board not always shares the author's opinion. The author is responsible for the significance of the facts, proper names and other information used in the paper. No part of this publication, pictures or other materials may be reproduced or transmitted in any form or by any means without permission in writing form with reference to the original. All rights reserved.

© Dnipro State Medical University, 2025 © Donetsk National Medical University, 2025 © Zaslavsky 0.Yu., 2025

3міст

Оригінальні дослідження

Contents

Original Researches

Леженко Г.О., Спільник М.С. Предиктори розвитку та прогресування діабетичної периферичної полінейропатії в дітей із цукровим діабетом 1-го типу	H.O. Lezhenko, M.S. Spilnik Predictors of development and progression of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus
Marisa Tulus Purnomo, Nur Aisiyah Widjaja, Retno Asih Setyoningrum Рівні гемоглобіну та IL-6 у дітей із затримкою росту і туберкульозною інфекцією, які отримують пероральні харчові добавки: дослідження з одногруповим дизайном і аналізом до та після втручання 13	Marisa Tulus Purnomo, Nur Aisiyah Widjaja, Retno Asih Setyoningrum Hemoglobin and IL-6 in stunted children with tuberculosis infection receiving oral nutritional supplement: one-group pre-test/post-test design
Личковська О.Л., Семен М.О., Кулачковська І.Ю., Семен В.Д. Функціональні гастроінтестинальні розлади у дітей раннього віку: чому важливі раннє втручання і мультидисциплінарний підхід	O.L. Lychkovska, M.O. Semen, I.Yu. Kulachkovska, V.D. Semen Functional gastrointestinal disorders in early childhood: the importance of early intervention and a multidisciplinary approach
Мавропуло Т.К., Соломенко М.В. Прогнозування наслідків післяасфіктичних ушкоджень мозку у немовлят на тлі лікувальної гіпотермії	T.K. Mavropulo, M.V. Solomenko Prediction of the outcomes of post-asphyxial brain injury in infants undergoing therapeutic hypothermia
Illona Okvita Wiyogo, IGB Adria Hariastawa, Munawaroh Fitriah, Fendy Matulatan Рівень ацетилхолінестерази в сироватці крові до та після резекції в пацієнтів із хворобою Гіршпрунга 35	Illona Okvita Wiyogo, IGB Adria Hariastawa, Munawaroh Fitriah, Fendy Matulatan The blood serum acetylcholinesterase levels pre- and post-resection in patients with Hirschsprung's disease
I Ketut Alit Utamayasa, Prima Hari Nastiti, Mahrus A. Rahman Зв'язок між тиском при трикуспідальній регургітації і тяжкістю серцевої недостатності в дітей з аціанотичною вродженою вадою серця, які отримують терапію силденафілом	I Ketut Alit Utamayasa, Prima Hari Nastiti, Mahrus A. Rahman Association between tricuspid regurgitant pressure and heart failure severity in children with acyanotic congenital heart disease receiving sildenafil therapy

Awsam Abdulsattar Marzaali, Ali Abid Abojassim Вплив природних радіоактивних матеріалів у снеках на здоров'я дітей в Іраку	Awsam Abdulsattar Marzaali, Ali Abid Abojassim Effect of NORM in snack foods on children's health in Iraq
Mushriq Abdullah Hussein Терапія N-ацетилцистеїном при гострій печінковій недостатності, не спричиненій ацетамінофеном, у дітей: одноцентрове дослідження 52	Mushriq Abdullah Hussein N-acetylcysteine therapy for pediatric non-acetaminophen- induced acute liver failure: a single center study
Огляд літератури	Review of Literature
Zyberaj J., Ikonomi E. Права дітей у прийнятті медичних	J. Zyberaj, E. Ikonomi Children's rights in medical
рішень: огляд принципів Європейського суду з прав людини 61	decision-making: a review of ECtHR principles61

Оригінальні дослідження / Original Researches

UDC 616.85-031.14-02:616.379-008.64]-053.2-036-037

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1916

H.O. Lezhenko, M.S. Spilnik

Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine

Predictors of development and progression of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus

Abstract. Background. Currently, unified strategy for preventing or treating diabetic peripheral polyneuropathy (DPN) in children has not yet been identified. Therefore, establishing risk factors for the development and progression of this complication is the basis of treatment and preventive measures. The purpose was to determine predictors of the development and progression of DPN in children with type 1 diabetes mellitus using factor and cluster analyses. Materials and methods. The study involved 103 children with type 1 diabetes mellitus aged 10 to 17 years who were divided into 2 groups: group 1 (n = 50) without signs of DPN, group 2 (n = 53) with DPN. In order to identify the pathogenetic factors that most determine the development of DPN in children with type 1 diabetes, factor analysis was performed using the principal component method and hierarchical cluster analysis was conducted using the method of intergroup relations. Results. As a result of the factor analysis, 4 factors were identified that determine the development of DPN in children with type 1 diabetes. The contribution of these factors to the total variance was 82.52 %. The leading mechanisms of DPN development in this cohort mellitus were identified, among which the priority contribution was made by chronic hyperglycemia with glycemic control with a high risk to life, insulin resistance, child's age, impaired peripheral circulation, duration of the course and age of manifestation of diabetes mellitus, development of diabetic myopathy. The specified factors formed 3 clusters, which logically complemented each other and confirmed their role in the development of DPN in children with type 1 diabetes. Conclusions. The results of the analysis demonstrate the multifactorial etiology of DPN in children with type 1 diabetes mellitus. Prediction of DPN in pediatric patients should be based on the identification of both non-modifiable (age of manifestation and duration of the disease, age and gender of the child) and modifiable factors (hyperlipidemia, development of insulin resistance, reduction in skeletal muscle mass, and impaired microcirculation).

Keywords: diabetes mellitus; neurological condition; diabetic neuropathies; risk factors; factor analysis; cluster analysis; children

Introduction

Diabetic neuropathy is a common complication of diabetes mellitus, the most frequent form of which is peripheral polyneuropathy (DPN), occurring in 45 % of patients with type 2 diabetes and 54 % of those with type 1 diabetes [1–3]. The results of the studies indicate a progressive increase in the incidence of DPN in children over time, in particular, its subclinical stages [4]. However, despite the widespread prevalence of diabetic peripheral polyneuropathy and the clear influence of hyperglycemia on the development of diabetic

neuropathy, there is currently no unified concept regarding the pathogenetic factors behind the development of this complication in children with type 1 diabetes. Therefore, a unified strategy for preventing or treating DPN in children has not yet been identified. Therefore, raising physician awareness regarding the early detection and elimination of modifiable risk factors and the development of treatment and preventive strategies are essential to addressing the increasing incidence of diabetic peripheral polyneuropathy in children with type 1 diabetes.

Для кореспонденції: Леженко Геннадій Олександрович, доктор медичних наук, професор, завідувач кафедри госпітальної педіатрії, Запорізький державний медико-фармацевтичний університет, бульвар Марії Примаченко, 26, м. Запоріжжя, 69035, Україна; e-mail: genalezh@gmail.com

For correspondence: Hennadii Lezhenko, MD, DSc, PhD, Professor, Head of the Department of Hospital Pediatrics, Zaporizhzhia State Medical and Pharmaceutical University, Mariia Prymachenko boulevard, 26, Zaporizhzhia, 69035, Ukraine; e-mail: genalezh@gmail.com

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

The purpose was to determine predictors of the development and progression of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus using factor and cluster analyses.

Materials and methods

The study involved 103 children with type 1 diabetes mellitus aged 10 to 17 years, with an average of 13.6 ± 0.2 years, who were divided into 2 groups: group 1 (n = 50, average age 13.24 ± 0.37 years) — children without signs of neuropathy, group 2 (n = 53, average age 14.19 ± 0.35 years) — children with DPN.

The diagnosis of type 1 diabetes mellitus was established in accordance with the Standard of Medical Care "Diabetes mellitus in children" (Order of the Ministry of Health of Ukraine No. 413 dated February 28, 2023) [5].

The presence and extent of diabetic peripheral polyneuropathy were assessed based on the severity of symptoms using the Clinical Neurological Examination Scale [6] and the Modified Pediatric General Neuropathy Scale [7].

Muscle mass in the observation groups was determined up to 14 years of age using the A.M. Peters formula [8]:

$$MM_{p} = 3.8 \times 0.0215 \times m^{0.6469} \times h^{0.7236}$$

where MM_p — muscle body mass, kg; m — body weight, kg; h — height, cm.

Starting from the age of 15, the P. Boer formula was used to determine muscle mass, which took into account the child's gender [9].

For girls:

$$MM = 0.252 \times m + 47.3 \times h - 48.3$$

where MMp — muscle body mass, kg; m — body weight, kg; h — height, cm.

For boys:

$$MM = 0.407 \times m + 26.7 \times h - 19.2$$

where MMp — muscle body mass, kg; m — body weight, kg; h — height, cm.

To quantitatively assess the state of muscle mass, we used the skeletal muscle index (SMI) expressed as a percentage and calculated using the formula [10]:

$SMI = (skeletal muscle mass / body mass) \times 100.$

The ankle-brachial index (ABI) was determined at rest and after physical activity (performing 20 squats at a free pace) by sequentially measuring the arterial systolic pressure (ASP) in the upper and lower extremities using a semi-automatic tonometer [11].

ABI = ASP on the a.tibialis posterior / ASP on the a.brachialis.

In addition to clinical examinations, children in the observation and comparison groups underwent a series of laboratory tests, including blood cholesterol, triglyceride, glucose, and glycated hemoglobin levels. To indirectly assess insulin resistance, the triglyceride-glucose (TyG) index was calculated using the formula [12].

TyG = In [fasting triglycerides (dg/mL) \times \times fasting glucose (dg/mL)] / 2.

Insulin resistance was diagnosed when the TyG index was determined to be higher than 4.33 arb. units [13].

All research was carried out in a quiet room at a stable temperature (20–22 C).

Mathematical analysis and statistical processing of the data were performed on a PC using the licensed Statistic for Windows 13.0 software package, serial number JPZ8041382130ARCN10-J. To identify hidden common factors that most influence the development of DPN and determine the structure of the relationships between them, factor analysis using the principal component method was performed, followed by orthogonal rotation of the factor axes using the VARIMAX method. The Spearman correlation matrix with the determination of the factor loading of the studied indicators was chosen as the basis for modeling for the selection of factor complexes. The scree method and the Kaiser criterion (the eigenvalues of each factor should exceed 1) were used to determine the minimum number of common factors in the model. Variables with a high factor loading on the complex (over 0.6) were used for the selection of indicators.

In order to identify typical combinations of leading pathogenetic factors in the development of DPN in children with type 1 diabetes mellitus, a hierarchical cluster analysis was applied using the method of intergroup relationships with subsequent construction of a dendrogram.

When planning the study, approval was obtained from the regional bioethics commission of the Zaporizhzhia State Medical and Pharmaceutical University. All procedures involving children complied with the ethical standards of the institutional and national research committees, the 1964 Declaration of Helsinki and its amendments, or comparable ethical standards set forth in the Belmont Report (April 18, 1979), adhering to the following principles: self-protection, parental knowledge and consent, and assessment of the risks of harm and benefit. Informed consent was obtained from all study participants and their legal guardians.

Results

To determine the pathogenic factors that most influence the development of DPN in children with type 1 diabetes, a factor analysis was conducted to identify the principal components (factors), which represent a combination of pathogenic factors that have the strongest impact on the development of the pathological process. The patient's medical history was analyzed, taking into account the duration of diabetes, age of onset, gender and age of the child, glycemic control, and glycated hemoglobin levels. Signs of insulin resistance (cholesterol, triglyceride, and TyG index levels), peripheral circulatory status before and after physical activity (ABI), and the skeletal muscle index as an indicator of diabetic myopathy were also taken into account.

As a result of factor analysis using the scree plot method, four factors were identified that determine the development of DPN in children with type 1 diabetes mellitus (Fig. 1). The contribution of these factors to the total variance was 82.52 %, with the first two factors accounting for 54.61 % of the variance (Table 1).

Based on the conducted analysis, a matrix of factor loadings was formed (Table 2).

The conducted analysis of the identified factors in the group of children with diabetic myopathy showed that the first factor, which determined 32.48 % of the variance, was occupied by the group factor, which combined 4 potential risk factors: 1) the level of glycated hemoglobin (factor loading 0.898); 2) the state of glycemic control (0.828); 3) the content of triglycerides (0.802) and the triglyceride-glucose index (0.889). This factor was defined by us as the metabolic factor.

The second-ranked factor, accounting for 22.13 % of the total variance, was a group factor combining two initial potential risk factors and associated with the child's age and the ankle-brachial index. This factor was interpreted as the vascular factor.

The third-ranked group factor, with a 16.68% of the variance share, was interpreted as the anamnestic factor. Within this group, two baseline risk factors were identified that had the highest factor loading: diabetes duration (factor loading of 0.804) and age at disease onset (factor loading of -0.978).

The fourth factor combined serum total cholesterol (factor load 0.877) and skeletal muscle mass index (factor load 0.900). This factor was assessed as a morpho-functional factor.

Table 1. Eigenvalues of factors and percentage of total variance

Factors	Eigenvalues of factors	Percentage of total variance (%)	Cumulative percentage of total variance (%)
1	3.57	32.48	32.48
2	2.44	22.13	54.61
3	1.84	16.68	71.29
4	1.24	11.23	82.52

The conducted factor analysis allowed us to determine the leading mechanisms of DPN development in children with type 1 diabetes mellitus, among which the most important contribution was made by chronic hyperglycemia with glycemic control with a high risk to life, insulin resistance, the age of the child, duration of the course and age of manifestation of diabetes mellitus, impaired peripheral circulation, and the development of diabetic myopathy.

Based on the data obtained, a hierarchical cluster analysis of the leading factors in the development of DPN was performed. Then three clusters were identified in the studied sample of pathogenetic factors in the development of diabetic peripheral polyneuropathy in children with type 1 diabetes (Fig. 2).

The hierarchical cluster analysis clearly demonstrates that, at the initial stage, an associative relationship is formed between indicators of glycemic control, lipid metabolism (total cholesterol and triglycerides), and insulin resistance (TyG index), followed by the addition of a peripheral circulatory status indicator. The content of these components, in turn, is influenced by the duration of diabetes (cluster 1).

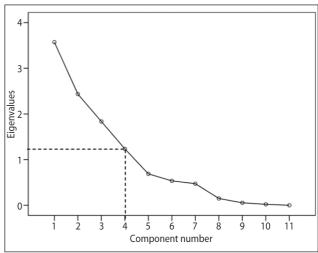


Figure 1. Graph of eigenvalues of factors determining the development of DPN in children with type 1 diabetes mellitus

Table 2. Factor loading matrix

Indicators	Factor 1	Factor 2	Factor 3	Factor 4
Gender				0.605
Age		0.922		
Duration of diabetes			0.804	
Age of onset of diabetes			-0.978	
Glycated hemoglobin	0.898			
Glycemic control	0.828			
Cholesterol				0.877
Triglycerides	0.802			
ABI		0.766		
SMI				0.900
TyG index	0.889			

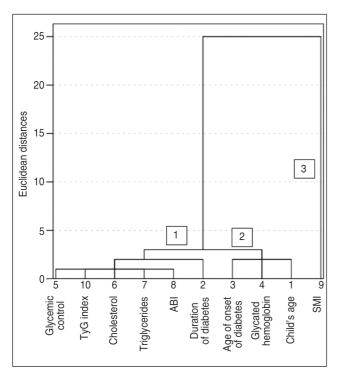


Figure 2. Dendrogram of cluster analysis using the method of intergroup relationships of the leading pathogenetic factors in the development of DPN in children with type 1 diabetes mellitus

Subsequently, based on the cluster grouping results, an agglomeration was formed consisting of the child's age, age at diabetes onset, and glycated hemoglobin level (cluster 2). The resulting structure is reflected in a hierarchical tree of different branches, and this cluster emphasized the initial role of chronic hyperglycemia in the development of DPN in children. The resulting linear relationships were completed by the skeletal muscle index, which, together with the indicators of clusters 1 and 2, formed a single agglomeration (cluster 3).

Moreover, the components of the formed clusters logically complement each other and confirm their role in the development of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus.

Discussion

The results of our study indicate that the development of DPN in children is caused by complex factors that are interrelated and lead to nerve damage, with hyperglycemia being the main factor. The role of hyperglycemia in the development of diabetic peripheral polyneuropathy has been investigated in several clinical trials, the results of which indicate a significant association between HbA1c levels and DPN in patients with diabetes [14, 15]. The results of the conducted factor and cluster analyses convincingly demonstrated that long-term hyperglycemia and poor glycemic control were the determinants in nerve damage and the development of DPN in children. Therefore, achieving optimal glycemic control is the primary goal in preventing the development and progression of DPN, as well as treating it in children with type 1 diabetes.

Another leading modifiable factor that may be associated with the development of DPN is hyperlipidemia,

particularly triglyceridemia. However, the mechanisms by which plasma triglycerides influence DPN remain unclear. A mouse study demonstrated that triglycerides impair peripheral nerve function and contribute to the development of DPN [16]. In the studies of M. Jaiswal et al. (2018), it was found that risk factors for the development of diabetic autonomic cardiopathy in type 1 diabetes, in addition to poor glycemic control, included elevated triglyceride levels [17]. However, other scientists did not find a significant connection between hypertriglyceridemia and an elevated triglyceride index with the development of DPN [18]. Our study demonstrated that hypertriglyceridemia and high triglyceride levels are closely associated with the development and progression of DPN in children with type 1 diabetes. We also found that elevated triglyceride levels are a risk factor for insulin resistance, for which triglyceride content is a sensitive marker in children with diabetes [19, 20]. Insulin resistance is accompanied by impaired neurotrophic support and is another potential mechanism for nerve damage and the development of DPN in diabetes mellitus, and damaged nerves cause neuronal insulin resistance [21].

Chronic hyperglycemia and insulin resistance contribute to vascular damage through various pathophysiological processes [22]. Today, DPN is considered a microvascular complication of diabetes, along with nephropathy and retinopathy [23]. Abnormal changes in endoneurial capillary morphology and vascular reactivity in diabetes may contribute to the development of diabetic neuropathy through endoneurial ischemia [21]. As a screening test for identifying peripheral circulation disorders in children with diabetes mellitus, we used the definition of the ABI, the indicator of which was included in the second group of factors of the general matrix.

Unlike other diabetic microvascular complications, DPN may be directly related to muscle dysfunction, since muscles are innervated by peripheral nerves and their functions are controlled by nerve activity [24]. Impaired peripheral circulation, in turn, leads to the prevalence of catabolism over anabolism in muscle tissue, which increases skeletal muscle fatigue and causes a decrease in muscle strength and muscle mass [25, 26]. Numerous studies, including a meta-analysis by Y. Zhang et al. (2020), have shown that skeletal muscle is the primary organ for glucose utilization, as muscle can improve insulin sensitivity by releasing bioactive peptides such as myokines, thereby protecting against metabolic disorders. This finding may be beneficial for restoring nerve function and improving nerve conduction. Conversely, decreased muscle mass was associated with adverse metabolic consequences that could exacerbate neuronal damage [27]. According to available data, DPN correlates with decreased muscle mass, but the causal relationship between the two factors is not entirely clear [28]. It has also been shown that signs of muscle atrophy preceded significant loss of peripheral nerve sensation [29].

Skeletal muscles are one of the main regulators of carbohydrate and lipid metabolism in human body [30]. Therefore, a decrease in muscle mass leads not only to a disruption in carbohydrate metabolism, but also to the development of dyslipidemia with an increase in the level of triglycerides and cholesterol [31]. Elevated cholesterol has been identified as a potential risk factor for the development of DPN.

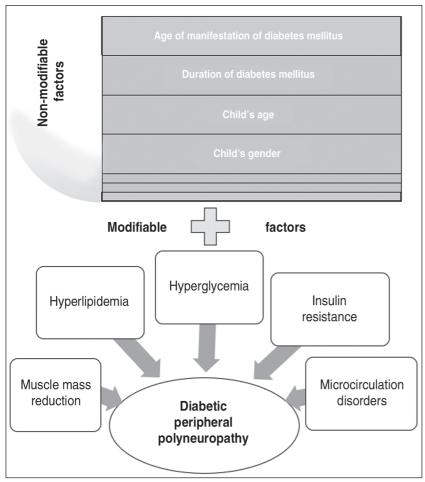


Figure 3. Risk factors underlying the development of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus

H. Zhang et al. (2023) identified a link between hypercholesterolemia and specific neuronal damage, with the effect of elevated cholesterol on peripheral nerve conduction velocity in patients with type 2 diabetes being entirely mediated by elevated HbA1c levels [32]. An analysis of the results of clinical trials on pharmacotherapy for DPN showed that lowering cholesterol and triglyceride levels slowed the rate of progression of diabetic neuropathy [33].

It has been established that when determining risk factors for DPN in children with type 1 diabetes, it is essential to consider non-modifiable factors such as age at onset and duration of diabetes, gender, and age. Recent advances in genetic knowledge and treatment methods for type 1 diabetes have shown that age at onset is a marker of heterogeneity in type 1 diabetes. This clinical heterogeneity is reflected in differences in the risk of complications, which is associated with a wide range of factors, from hyperglycemia and long-term diabetes to race, ethnicity, and socioeconomic factors [34]. Younger age is associated with higher risk and faster progression through disease stages, as well as with different histological characteristics, immunological patterns, and genetic influences. Older age and lower HbA1c levels at diagnosis suggest a slower loss of C-peptide [35]. In turn, better preserved residual beta cell function ensures a lower risk of diabetes complications [36].

Our study demonstrates that the incidence of DPN in children with type 1 diabetes was higher among those with

early onset and, correspondingly, a longer disease duration (r = -0.32, p < 0.05). These findings complement those of other studies that have found a significant association between DPN and diabetes duration in children and adolescents with type 1 diabetes [37]. According to a 2017 Asian-Indian study, among children with type 1 diabetes, there was an approximately twofold rise in the prevalence of DPN with an increase in diabetes duration from 5-10 to more than 10 years (5-13%) (p < 0.0001) [38]. The risk of developing DPN increases with the onset of puberty. Recent research indicates a critical impact of puberty on the incidence of DPN in children, and puberty is considered the age period when pediatricians should be especially alert for the development of DPN in children with type 1 diabetes [37]. Although early-onset diabetes is characterized by a more aggressive course [39], to date no studies have been conducted on the relationship between the age of diagnosis of diabetes mellitus and the incidence of DPN.

There are numerous reports from different countries that have observed significant differences in the sex ratio in the determinism of metabolic diseases [40]. In experimental models obtained in rats, it was noted that the use of estradiol protects pancreatic islets from multiple metabolic and proinflammatory lesions *in vivo*, restoring the immunomodulatory functions of

natural killer cells [41]. At the same time, a Japanese study found a higher incidence in girls aged 0–19 years. These results may indicate that childhood- and adult-onset type 1 diabetes have different developmental mechanisms [42]. Another study found that women, compared to male patients, have an increased risk of developing painful symptoms of neuropathy, as well as more frequent neuropathy symptoms such as paresthesia and loss of sensation in the feet [43].

Therefore, based on the results of the analysis of factor loadings and the conducted cluster analysis, it was found that the development of DPN in children is caused by complex factors that are interconnected and lead to nerve damage (Fig. 3).

Traditionally, hyperglycemia and poor glycemic control are the main risk factors for DPN. Furthermore, age at onset and duration of diabetes, puberty, and female gender further increase the risk of DPN. Hyperlipidemia, the development of insulin resistance, decreased skeletal muscle mass, and impaired microcirculation are modifiable risk factors for DPN, and addressing these factors, along with correcting hyperglycemia, should be a key target for preventing and treating nerve damage in children with diabetes.

Conclusions

1. Based on the results of the studies, a multifactorial etiology of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus was established. 2. Prediction of diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus should be based on the determination of key indicators, namely non-modifiable (age of onset of diabetes mellitus, duration of the disease, age and gender of the child) and modifiable factors (hyperlipidemia, development of insulin resistance, impaired microcirculation).

Prospects for further research include the creation of a mathematical model for predicting diabetic peripheral polyneuropathy in children with type 1 diabetes mellitus in order to identify patients at high risk of developing this complication and implement timely treatment and preventive measures.

References

- 1. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):1-18. doi: 10.1038/s41572-019-0092-1.
- 2. Hansen CS, Määttä LL, Andersen ST, Charles MH. The epidemiology of diabetic neuropathy. In: Tesfaye S, Gibbons CH, Malik RA, Veves A, eds. Diabetic neuropathy. Contemporary Diabetes. Cham: Springer; 2023. 5-36. doi: 10.1007/978-3-031-15613-7 2.
- 3. Ang L, Mizokami-Stout K, Eid SA, Elafros M, Callaghan B, et al. The conundrum of diabetic neuropathies past, present, and future. J Diabetes Complications. 2022;36(11):108334. doi: 10.1016/j.jdiacomp.2022. 108334.
- 4. Türkyilmaz H, Güzel O, Edizer S, Ünalp A. Evaluation of polyneuropathy and associated risk factors in children with type 1 diabetes mellitus. Turk J Med Sci. 2017;47(3):942-946. doi: 10.3906/sag-1601-183.
- 5. Zakon.rada.gov.ua. Ministry of Health of Ukraine. Standards of medical care "Diabetes mellitus in children". Kyiv; 2023. Available from: https://moz.gov.ua/uploads/8/44300-dn 413 28022023 dod.pdf.
- 6. Valk GD, Nauta JJP, Strijers RLM, Bertelsmann FW. Clinical examination versus neurophysiological examination in the diagnosis of diabetic polyneuropathy. Diabet Med. 1992;9(8):716-721. doi: 10.1111/j.1464-5491.1992.tb01879.x.
- 7. Gilchrist LS, Tanner L. The pediatric-modified total neuropathy score: a reliable and valid measure of chemotherapy-induced peripheral neuropathy in children with non-CNS cancers. Support Care Cancer. 2012;21(3):847-856. doi: 10.1007/s00520-012-1591-8.
- 8. Peters AM, Snelling HLR, Glass DM, Bird NJ. Estimation of lean body mass in children. Br J Anaesth. 2011;106(5):719-723. doi: 10.1093/bja/aer057.
- 9. Boer P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol Renal Physiol. 1984;247(4):632-636. doi: 10.1152/ajprenal.1984.247.4.F632.
- 10. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889-896. doi: 10.1046/j.1532-5415.2002.50216.x.
- 11. Elbarbary NS, Ismail EAR, El-Hilaly RA, Ahmed FS. Role of neopterin as a biochemical marker for peripheral neuropathy in pediatric patients with type 1 diabetes: relation to nerve conduction studies. Int Immunopharmacol. 2018;59:68-75. doi: 10.1016/j.intimp.2018.03.026.
- 12. Dikaiakou E, Vlachopapadopoulou EA, Paschou SA, Athanasouli F, Panagiotopoulos I, et al. Triglycerides-glucose (TyG) index is a sensitive marker of insulin resistance in Greek children and adolescents. Endocrine. 2020;70(1):58-64. doi: 10.1007/s12020-020-02374-6.
- 13. Sánchez-Escudero V, Lacalle CG, Vergaz AG, Mateo LR, Cabrero AM. The triglyceride/glucose index as an insulin resistance marker in

- the pediatric population and its relation to eating habits and physical activity. Endocrinología, Diabetes y Nutrición (English ed.). 2021;68(5):296-303. doi: 10.1016/j.endien.2020.08.015.
- 14. Bondar A, Popa AR, Papanas N, Popoviciu M, Vesa CM, et al. Diabetic neuropathy: a narrative review of risk factors, classification, screening and current pathogenic treatment options. Exp Ther Med. 2021;22(1):690. doi: 10.3892/etm.2021.1012.
- 15. Wang W, Ji Q, Ran X, Li C, Kuang H, Yu X, Zhu D. Prevalence and risk factors of diabetic peripheral neuropathy: a population-based cross-sectional study in China. Diabetes Metab Res Rev. 2023;39(8):e3702. doi: 10.1002/dmrr.3702.
- 16. O'Brien PD, Guo K, Eid SA, Rumora AE, Hinder LM, et al. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech. 2020;13(2):dmm042101. doi: 10.1242/dmm.042101.
- 17. Jaiswal M, Divers J, Urbina EM, Dabelea D, Bell RA, Pettitt DJ; SEARCH for Diabetes in Youth Study Group. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth Cohort Study. Pediatr Diabetes. 2018;19(4):680-689. doi: 10.1111/pedi.12633.
- 18. Tu Z, Du J, Ge X, Peng W, Shen L, et al. Triglyceride glucose index for the detection of diabetic kidney disease and peripheral neuropathy in hospitalized patients with type 2 diabetes. Diabetes Ther. 2024;15(8):1799-1810. doi: 10.1007/s13300-024-01609-3.
- 19. Bjornstad P, Eckel RH. Pathogenesis of lipid disorders in insulin resistance: a brief review. Curr Diab Rep. 2018;18(12):127. doi: 10.1007/s11892-018-1101-6.
- 20. Lezhenko HO, Pashkova OYe, Chudova NI. The association between the skeletal muscle state, lipid metabolism disorders and insulin resistance in children with type 1 diabetes mellitus. Zaporozhye Med J. 2022;24(6):687-694. doi: 10.14739/2310-1210.2022.6.261182 (in Ukrainian).
- 21. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018;9(6):1239-1254. doi: 10.1111/jdi.12833.
- 22. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. doi: 10.3390/ijms21176275.
- 23. Pek SLT, Lim SC, Ang K, Kwan PY, Tang WE, et al. Endothelin-1 predicts incident diabetic peripheral neuropathy in type 2 diabetes: a cohort study. Eur J Endocrinol. 2020;182(4):429-438. doi: 10.1530/eje-19-0523.
- 24. Oh TJ, Song Y, Moon JH, Choi SH, Jang HC. Diabetic peripheral neuropathy as a risk factor for sarcopenia. Ann Geriatr Med Res. 2019;23(4):170. doi: 10.4235/agmr.19.0039.
- 25. Kim JH, Lim S, Choi SH, Kim KM, Yoon JW, Kim KW. Sarcopenia: an independent predictor of mortality in community-dwelling older Korean men. J Gerontol: Series A. 2014;69(10):1244-1252. doi: 10.1093/gerona/glu050.
- 26. Pashkova OYe, Chudova NI. The role of peripheral circular disorders in the development of diabetic myopathy in children with diabetes. Curr Probl Mod Med. 2021;8:69-78. doi: 10.26565/2617-409x-2021-8-07 (in Ukrainian).
- 27. Zhang Y, Shen X, He L, Zhao F, Yan S. Association of sarcopenia and muscle mass with both peripheral neuropathy and nerve function in patients with type 2 diabetes. Diabetes Res Clin Pract. 2020;162:108096. doi: 10.1016/j.diabres.2020.108096.
- 28. Wang L, Lin X, Huang H, Wang Y, Liang X, et al. Low rectus femoris mass index is closely associated with diabetic peripheral neuropathy. Front Endocrinol. 2023;14:1148093. doi: 10.3389/fendo.2023.1148093.
- 29. Henderson AD, Johnson AW, Rasmussen LG, Peine WP, Symons SH, et al. Early-stage diabetic neuropathy reduces foot

strength and intrinsic but not extrinsic foot muscle size. J Diabetes Res. 2020;2020:9536362. doi: 10.1155/2020/9536362.

- 30. Morales PE, Bucarey JL, Espinosa A. Muscle lipid metabolism: role of lipid droplets and perilipins. J Diabetes Res. 2017;2017:1789395. doi: 10.1155/2017/1789395.
- 31. Lee JH, Lee HS, Cho AR, Lee YJ, Kwon YJ. Relationship between muscle mass index and LDL cholesterol target levels: analysis of two studies of the Korean population. Atherosclerosis. 2021;325:1-7. doi: 10.1016/j.atherosclerosis.2021.01.016.
- 32. Zhang H, Chen Y, Zhu W, Niu T, Song B, et al. The mediating role of HbA1c in the association between elevated low-density lipoprotein cholesterol levels and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. Lipids Health Dis. 2023;22(1):102. doi: 10.1186/s12944-023-01865-5.
- 33. Iqbal Z, Bashir B, Ferdousi M, Kalteniece A, Alam U, et al. Lipids and peripheral neuropathy. Curr Opin Lipidol. 2021;32(4):249-257. doi: 10.1097/mol.00000000000000770.
- 34. Redondo MJ, Hagopian WA, Oram R, Steck AK, Vehik K, et al. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia. 2020;63:2040-2048. doi: 10.1007/s00125-020-05211-7.
- 35. Hao W, Gitelman S, DiMeglio LA, Boulware D, Greenbaum CJ; Type 1 Diabetes TrialNet Study Group. Fall in C-peptide during first 4 years from diagnosis of type 1 diabetes: variable relation to age, HbA1c, and insulin dose. Diabetes Care. 2016;39(10):1664-1670. doi: 10.2337/dc16-0360.
- 36. Lachin JM, McGee P, Palmer JP; DCCT/EDIC Research Group. Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes. 2014;63(2):739-748. doi: 10.2337/db13-0881.

- 37. Akinci G, Savelieff MG, Gallagher G, Callaghan BC, Feldman EL. Diabetic neuropathy in children and youth: new and emerging risk factors. Pediatr Diabetes. 2021;22(2):132-147. doi: 10.1111/pedi.13153.
- 38. Jaiswal M, Divers J, Dabelea D, Isom S, Bell RA, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for diabetes in youth study. Diabetes Care. 2017;40(9):1226-1232. doi: 10.2337/dc17-0179.
- 39. Sales Luis M, Alcafache M, Ferreira S, Fitas AL, Simões Pereira J, et al. Children with type 1 diabetes of early age at onset immune and metabolic phenotypes. J Pediatr Endocrinol Metab. 2019;32(9):935-941. doi: 10.1515/ipem-2019-0103.
- 40. Ciarambino T, Crispino P, Leto G, Mastrolorenzo E, Para O, Giordano M. Influence of gender in diabetes mellitus and its complication. Int J Mol Sci. 2022;23(16):8850. doi: 10.3390/ijms23168850.
- 41. Mauvais-Jarvis F. Role of sex steroids in β-cell function, growth, and survival. Trends Endocrinol Metab. 2016;27:844-855. doi: 10.1016/j. tem. 2016.08.008.
- 42. Nishioka Y, Noda T, Okada S, Myojin T, Kubo S, et al. Incidence and seasonality of type 1 diabetes in Japan: a population-based 3-year cohort study using the National Database in Japan. BMJ Open Diabetes Res Care. 2020;8:e001262. doi: 10.1136/bmjdrc-2020-001262.
- 43. Elliott J, Sloan G, Stevens L, Selvarajah D, Cruccu G, Gandhi RA; EURODIAB Prospective Complications Study Group. Female sex is a risk factor for painful diabetic peripheral neuropathy: the EURODIAB prospective diabetes complications study. Diabetologia. 2024;67(1):190-198. doi: 10.1007/s00125-023-06025-z.

Received 12.08.2025 Revised 24.09.2025 Accepted 30.09.2025

Information about authors

Hennadii Lezhenko, MD, DSc, PhD, Professor, Head of the Department of Hospital Pediatrics, Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine; e-mail: genalezh@gmail.com; http://orcid.org/0000-0003-0851-4586

M. Spilnik, MD, PhD Student of the Department of Hospital Pediatrics, Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine; e-mail: RitaSpilnik@gmail.com

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Леженко Г.О., Спільник М.С.

Запорізький державний медико-фармацевтичний університет, м. Запоріжжя, Україна

Предиктори розвитку та прогресування діабетичної периферичної полінейропатії в дітей із цукровим діабетом 1-го типу

Резюме. Актуальність. На сьогодні немає єдиної стратегії запобігання діабетичній периферичній полінейропатії (ДПН) або її лікуванняу дітей, тому визначення факторів ризику розвитку та прогресування цього ускладнення є підгрунтям для розробки лікувально-профілактичних заходів. Мета: встановити предиктори розвитку та прогресування ДПН у дітей, хворих на цукровий діабет 1-го типу, за результатами факторного та кластерного аналізів. Матеріали та методи. Під спостереженням знаходилося 103 пацієнти з цукровим діабетом 1-го типу віком від 10 до 17 років: 1-ша група (n = 50) — діти без ознак нейропатії, 2-га група (n = 53) — діти з діабетичною периферичною полінейропатією. Для визначення патогенетичних факторів, що найбільше впливають на розвиток ДПН у дітей із цукровим діабетом 1-го типу, проведений факторний аналіз методом головних компонент та ієрархічний кластерний аналіз з використанням методу міжгрупових зв'язків. Результати. У результаті проведеного факторного аналізу виділено 4 фактори, що визначають розвиток ДПН у дітей, хворих на цукровий діабет 1-го типу. Внесок цих факторів у загальну

дисперсію становив 82,52 %. Було визначено провідні механізми розвитку ДПН у цій когорті, серед яких найбільш значущими були хронічна гіперглікемія з глікемічним контролем з високим ризиком для життя, інсулінорезистентність, вік дитини, порушення периферичного кровообігу, тривалість перебігу та вік маніфестації цукрового діабету, розвиток діабетичної міопатії. Означені фактори становили 3 кластери, які логічно доповнювали один одного та підтверджували їх роль у розвитку ДПН у дітей, хворих на цукровий діабет 1-го типу. Висновки. За результатами проведеного аналізу показано багатофакторну етіологію ДПН у дітей із цукровим діабетом 1-го типу. Прогнозування розвитку ДПН у дітей повинно базуватися на визначенні як немодифікованих (вік маніфестації та тривалість перебігу захворювання, вік і стать пацієнта), так і модифікованих факторів (гіперліпідемія, інсулінорезистентність, зменшення скелетної м'язової маси й порушення мікроциркуляції).

Ключові слова: цукровий діабет; неврологічний стан; діабетична нейропатія; фактори ризику; факторний аналіз; кластерний аналіз; діти

Оригінальні дослідження / Original Researches

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1917

Marisa Tulus Purnomo, Nur Aisiyah Widjaja, Retno Asih Setyoningrum Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia

Hemoglobin and IL-6 in stunted children with tuberculosis infection receiving oral nutritional supplement: one-group pre-test/post-test design

Abstract. Background. Undernutrition due to tuberculosis (TB) infection is high in children and is often accompanied by micronutrient deficiency resulting from insufficient nutritional intake such as iron deficiency anemia. Undernutrition also caused a decrease in IL-6, making children vulnerable to the infection. This study was aimed at analyzing the effect of oral nutritional supplements on hemoglobin, interleukin (IL)-6 levels, weight and length increment in stunted children with TB. **Materials and methods.** A pre-experimental study with one-group pre-test/post-test design was conducted from October 2022 to July 2023 in a private hospital, Surabaya, East Java, involving stunted children with TB infection aged 12 to 60 months. The statistical analysis included descriptive statistics (mean \pm standard deviation or n (%)), independent sample T-test or Mann-Whitney U test, and paired sample T-test or Wilcoxon sign rank test, depending on the normality. **Results.** A total of 29 subjects were enrolled in this study, with a mean age of 25.40 \pm 11.30 months. 58.62 % of subjects were aged below 24 months old, and 41.38 % were aged between 25 and 60 months. No significant difference was seen in IL-6 and hemoglobin before and after the intervention. The average hemoglobin level before the intervention was 12.07 \pm 1.22 mg/dL, and after the intervention it was 12.00 \pm 1.09 mg/dL, while for IL-6, these indicators were 125.76 \pm 116.87 and 122.41 \pm 104.43 µg/L, respectively (p = 0.441). **Conclusions.** Oral nutritional supplements intervention for 90 days did not affect IL-6 and hemoglobin levels of children with TB.

Keywords: tuberculosis; stunted growth; IL-6; anemia; hemoglobin

Introduction

Stunting is caused by the chronic undernutrition [1], defined as low length/height-for-age based on sex, or length/ height-for-age less than -2.00 standard deviation (SD) based on the World Health Organization (WHO) child growth standards [2]. Stunting risk factors include socioeconomic one, maternal health and nutrition, recurrent infection, nutritional intake for infants and children, parent's/ caregiver knowledge [3, 4], and fetal growth [5]. Tuberculosis (TB) infection is the most common infection globally, affecting more than two billion people. Mycobacterium tuberculosis is the leading cause of death due to infection, with the mortality of 1.6 million per year. The trend per year is increasing [6], particularly in Asia. Indonesia is in second place after India in terms of TB prevalence [7], and 11 % of 9 million TB infection cases are children. Malnutrition due to TB infection is high in children, with the mortality of 2.2 million globally [8].

Undernutrition is one of TB risk factor, causing the increment of death due to drug toxicity [9]. Undernutrition refers to children with underweight, stunted or wasted, or with nutrient deficiency. This makes them vulnerable to infection [10]. Also, undernutrition is often accompanied by micronutrient deficiency due to insufficient nutritional intake, both macro- and micronutrients. One of micronutrient deficiency affecting children with stunted growth is iron deficiency anemia. Also, infection increases proinflammatory cytokines such as interleukin (IL)-6, but undernutrition also caused a decrease in IL-6. The condition leads to the vulnerability to the infection [11, 12]. It is described as cycle correlation between infection and undernutrition. Infection also causes the hepcidin stimulation, leading to a decrease in iron absorption in the duodenum, so anemia and hypoferremia occur [13].

Tuberculosis requires regular treatment for the infection and nutritional support containing adequate protein,

For correspondence: Nur Aisiyah Widjaja, Child Health Department, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Jl. Mayjen Prof. Dr. Moestopo No. 6–8, Surabaya, 60286, Indonesia; e-mail: nuril08@yahoo.com

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

with a protein-energy ratio of 8-15 %, to promote rapid weight gain (catch-up), so that length and height will follow an increase in body weight linearly. If weight gain is rapid and meets dietary standards, length and height will return to normal [14]. Nutritional supplementation is also intended to address micro- and macronutrient deficiencies in TB patients. Research in various countries has shown that oral nutritional supplements (ONS) provide positive results in cases of malnutrition, and patients with malnutrition have reportedly experienced catch-up [15, 16]. Meanwhile, other studies showed that ONS intervention for 6 months decreased the rate of anemia (29.2 to 10.4 %), hypoalbuminemia (82.1 to 20.8 %) and zinc deficiency (66.0 to 29.2 %) in children aged 24 to 48 months [16]. ONS contain sufficient macroand micronutrients to meet the daily needs for children with high risk of undernutrition [17] and increase the nutritional intake, in particular protein and calories [18], to improve nutritional status [19]. However, there are few studies examining the effect of ONS on stunted TB patients in Indonesia. Furthermore, stunting evaluation is not limited to anthropometric parameters, but also includes other indicators such as hemoglobin (Hb) and IL-6. Therefore, research is needed to investigate the effect of ONS on Hb and IL-6 in Indonesian stunted children with TB. This study was aimed at analyzing the effect of ONS on Hb, IL-6 levels, weight and length increment in stunted children with TB.

Materials and methods Study design

A pre-experimental study with one-group pre-test/post-test design was conducted from October 2022 to July 2023 in a private hospital of Surabaya, East Java. It involved children with stunted growth suffering from TB infection diagnosed by a pediatrician based on TB score criteria. Subjects were children visiting outpatient installation in Husada Utama Hospital who were eligible according to inclusion and exclusion criteria. Inclusion criteria: age of 12 to 60 months, stunting based on LAZ/HAZ, TB infection. Patients who were found to have fluid retention disorders, organomegaly, tumor masses, congenital disorders, and cerebral palsy based on anamnesis and physical examination were excluded.

Sample size

The sample size for the study was calculated using the sample size formula for a single proportion:

$$n = \left[\frac{(Z_{1-\alpha} + Z_{1-\beta}) \times \sigma)}{\mu 1 - \mu 2}\right]^2,$$

where n is minimum sample size, $Z_{I-\alpha}$ is standard normal distribution value (Z-table) at a specific α (0.05) = 1.96, $Z_{I-\beta}$ is standard normal distribution value (Z-table) at a specific β (80 % = 0.84) and 90 % = 1.28, σ is variance value in the population, $\mu I - \mu 2$ is estimated difference in the mean value in population 1 and population 2.

Since there is no research examining ONS effect on IL-6 and Hb in children aged 1–5 years with stunting and TB infection, the level of validity of IL-6 and Hb content was determined to be 50 %. If in this study the level of validity of IL-6 and Hb level in those who received ONS is 75 %, then the sample size calculation was 24. To anticipate the pre-

sence of research subjects who drop out during the research, a non-response correction is carried out using the formula below:

$$n'=n\,\frac{1}{1-f}\,,$$

where n is sample size before correction, f is non-response rate estimated at 10 %, n is sample size after correction.

Based on this formula, a minimum of 30 research subjects were required for this study.

ONS intervention

The intervention was provisioned after the researchers received the inform consent that have been signed by the children parents/caregiver. Before the recruitment, subjects who came to the outpatient installation were enrolled for the anthropometric measurements by the nurses as the standard rule of the hospital. This included body weight, length/height, and head circumference, resulting on weight-for-age (WAZ), length-/height-for-age (LAZ/HAZ), and weight-for-length/-height (WLZ/WHZ) Z-score based on sex using the WHO child growth standard.

Based on these results, the researchers diagnosed the children were stunted when LAZ/HAZ was <-2.00 to -3.00, severely stunted when <-3.00; underweight when HAZ <-2.00 to -3.00, severely underweight when <-3.00; wasted when WLZ/WHZ <-2.00 to -3.00, severely wasted when <-3.00. After getting the inform consent, the researchers prescribed ONS for 15 days and suggested blood investigation in the hospital laboratory. After 15 days of ONS consumption, the subjects were asked to visit the doctors for evaluation and then prescribed with ONS for the next 15 days. At day 30, children were asked for the next evaluation and anthropometric measurements, and then prescribed again for 30 days. Similar circles were repeated

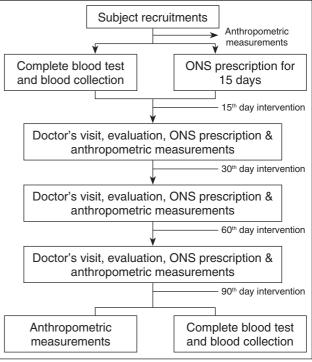


Figure 1. Intervention flowchart

until 90 days, and then blood samples were collected, as described in Fig. 1. The ONS energy density was 1 kcal/ml, with daily consumption of 400 kcal/day as supplementary nutrition along with complementary feeding.

Blood samples

Blood was withdrawn via vena cubiti by a laboratory employee at Husada Utama Hospital to measure IL-6 before (day 0, when the parents agreed to participate in this study) and after the intervention (day 90). Then, it was processed to separate the supernatants and plasma using centrifuge, followed by complete blood count. Meanwhile, IL-6 was examined in the Institute of Tropical Disease, Universitas Airlangga, using the plasma provided by the hospital (placed on PCR tube 1.5 mL, then kept on freezer with temperature -4 °C).

Anthropometric measurements

The anthropometric measurements were performed when the subjects registered for doctor's checkups as routine procedures. They were done by two nurses using a Seca 354 digital baby scale or a Seca 813 electronic flat scale to measure the body weight. Body length/height was measured using a Seca 415 infantometer or Seca 213 stadiometer. The measurements were done with the children wearing light clothes without footwear or hair accessories.

Statistical analysis

The statistical analysis includes descriptive statistics (mean \pm SD or n (%)), and paired sample T-test or Wilcoxon sign rank test depending on the normality.

Ethical consideration

Ethical approval was obtained from the Health Research Ethics Committee, Faculty of Medicine, Universitas Airlangga, with ethical clearance number 170/EC/KEPK/FKUA/2024.

Results

A total of 30 children agreed to participate in this study initially, but one of them could not be contacted and was no longer in the clinic for follow-up visits, resulting in only 29 subjects completing the study. In addition to receiving ONS as a supplement, children' parents were educated from the outset about providing complementary foods containing animal protein such as eggs, mackerel, and meat. Furthermore, subjects were also given 400 ml of ONS per day, equivalent to 400 kcal per day. The study participants were children experiencing growth problems, like stagnant weight or difficulty eating, who were brought by their parents on their own initiative for examination. The examinations revealed evidence of TB infection.

Table 1 shows the characteristics of the study subjects: their mean age was approximately 25.40 ± 11.30 months, with a higher proportion of females than males (55 vs. 45 %). The primary complaints reported included feeding difficulty with a stagnant body weight (31.03 %), failure to gain weight and length/height (5.88 %), and stagnant body weight (65.51 %). The average duration of these complaints was approximately 2 months. Most subjects were born at term with birth weight and length within the normal range. All subjects showed signs of TB infection, as evidenced by a positive Mantoux test result, with average Mantoux test diameter of 10.32 ± 3.59 mm, and a TB score of 6.71 ± 1.60 , indicating the severity of infection. Anemia affected a total of 5 (17.24 %) subjects before the intervention and increased to 6 after it (20.69 %). Anemia was defined as Hb levels < 11.00 mg/dL for children aged 6 to 60 months.

Table 2 shows the changes in Hb levels in the study subjects. The average Hb before the intervention was

Table 1. Subject's characteristics

Characteristics	12–24 months old (n = 17)	25–60 months old (n = 12)	P value
Birth weight (kg)	2.90 ± 0.37	2.81 ± 0.74	0.655
Birth length (cm)	49.12 ± 2.03	47.88 ± 3.44	0.266
Ferritin	32.97 ± 25.70	48.11 ± 44.85	0.355
TB score	6.59 ± 1.58	7.08 ± 1.73	0.471
Mantoux test diameter (mm)	10.18 ± 3.91	10.50 ± 3.06	0.728
Age of initial complaint (months)	8.41 ± 3.12	24.18 ± 16.25	0.001
Duration of complaint (months)	9.00 ± 3.43	12.91 ± 11.44	0.195
Main complaints, n (%): — feeding difficulties and stagnant weight; — stagnant body weight and body length/height; — stagnant body weight	4 (23.53) 1 (5.88) 12 (70.59)	5 (41.67) 0 7 (58.33)	0.667
Sex, n (%): — male; — female	5 (29.41) 12 (70.59)	8 (66.67) 4 (33.33)	0.067
Anemia (pre-intervention), n (%)	1 (5.88)	4 (33.33)	0.130
Anemia (post-intervention), n (%)	3 (17.65)	3 (25)	0.487

Table 2. IL-6 and Hb levels in stunted children

Variables	Pre-intervention	Post-intervention	Δ	P value
Hb (mg/dL)	12.07 ± 1.22	12.00 ± 1.09	0.07 ± 1.64	0.684
IL-6 (pg/mL)	125.76 ± 116.87	122.41 ± 104.43	3.35 ± 156.71	0.279

 12.07 ± 1.22 mg/dL, while after the intervention, it was 12.00 ± 1.09 mg/dL, with a mean change (Δ Hb) of 0.07 ± 1.64 mg/dL, and there was no significant difference (p = 0.684). Based on changes in IL-6 levels, 11 subjects experienced a decrease in Hb levels, and 18 had an increase.

IL-6 levels before and after the intervention did not show a significant difference (125.76 ± 116.87 compared to 122.41 ± 104.43 pg/mL, p = 0.441). Of all the study subjects, after the intervention, 10 children experienced a decrease in IL-6 levels and 19 had an increase. The distribution of IL-6 data was non-normal, so Wilcoxon analysis was used and showed no significant difference (p = 0.279).

Discussion

TB infection is transmitted through the respiratory route when infected droplets, small (1-5 micrometers) nuclei, are released by patients with pulmonary TB and inhaled into the alveoli of individuals in close contact. Once mycobacteria enter the lungs, alveolar macrophages and dendritic cells are the first cells to detect and engulf the pathogens. These cells, along with other innate antimicrobial mediators, trigger a series of innate immune responses such as activation of the complement pathway, stimulation of the production of proinflammatory chemokines and cytokines, including interferon-gamma and tumor necrosis factor-alpha (TNF- α), and increased opsonization and phagocytosis to control or clear the infection. If these responses fail or are inadequate, mycobacteria can invade the lungs. Next, the adaptive immune response will be activated when macrophages and dendritic cells present Mycobacterium tuberculosis antigens to T cells, including Th-1 type CD4⁺ T cells, CD8⁺ cytotoxic T cells, and gamma-delta T cells, which play a role in increasing the secretion of key cytokines for infection control [20].

Stunting weakened the immune system, making it easier for latent TB to progress to active form. Furthermore, TB patients experience substantial increased energy requirements, leading to significant energy loss and worsening stunting [21]. Most patients with stunting and TB in this study were girls. This finding aligns with another study in Ethiopia, which found that girls were more likely to experience stunting, at 62 % of the participants [22], but other study conducted in Nepal showed that male children had a higher risk to be stunted than female (60.7 vs. 51.8 %) [23], and supported a study in Indonesia that stunting was mostly found in male than female (56.7 vs. 43.3 %) children under 2 years [24]. Differences between the sexes may be influenced by various factors, including socioeconomic conditions, access to health services, inadequate feeding practices, etc. [25].

In this study, most patients complained of weight loss. This condition is caused by deficiencies of micronutrients, which are essential elements in diets to support various physiological processes such as energy production, immune

response, and other bodily functions. TB patients often experience weight loss and malnutrition due to inadequate protein intake, muscle catabolism triggered by inflammation during infection, and gastrointestinal symptoms caused by acute phase proteins like high levels of TNF- α [25]. In addition, malnutrition can also be caused by factors other than TB infection such as diarrhea and low birth weight.

This study showed no significant difference in Hb levels before and after the intervention, even though TB infection in children causes anemia of inflammation or chronic disease anemia. In systemic infections, several changes occur such as a shortened lifespan of erythrocytes, disruption of iron incorporation into erythrocytes, and decreased sensitivity or supply of erythropoietin [26]. This process occurs as a result of the body's response to chronic infection, which disrupts iron metabolism, erythropoietin production, and bone marrow hematopoiesis. In TB infection, the body produces pro-inflammatory cytokines such as IL-6, which interfere with iron release from macrophages and reduce the efficiency of red blood cell production [27]. In addition, TB can affect a child's nutritional status, both directly through increased metabolic demands due to infection and indirectly by reducing appetite, which contributes to micronutrient deficiencies (iron and vitamins) that are important for Hb formation [28]. The average hemoglobin level was $\geq 10 \text{ mg/dL}$, indicating that nutritional support for TB patients can prevent anemia. These findings align with several studies. Research by Mithra et al. (2021) demonstrated that iron and micronutrient fortification and supplementation were consistently effective in reducing the risk of anemia and increasing hemoglobin levels [29]. Another study by Gao et al. (2023) aimed to evaluate the impact of TB infection on anthropometric indicators, malnutrition, and anemia in children in Southwest China [26]. It showed a decrease in hemoglobin and albumin in children with TB. Anemia is caused by micronutrient and protein deficiencies, as demonstrated in a study by Ren et al. (2019) that evaluated the nutritional status of TB patients and other factors [28]. These micronutrient deficiencies were getting worse with the disease progression. Research by Martinez et al. (2023) showed that some subjects with more complex TB had severe malnutrition and anemia [30]. Children with poor nutritional status were more likely to discontinue treatment, suggesting that nutritional status plays a significant role in the success of TB treatment. In this study, differences in hemoglobin levels were not significant due to the influence of other factors. Worm infection can affect hemoglobin levels [31], but in our study, a complete stool examination was not carried out.

This study showed a decrease in IL-6 levels, although not significant. It also demonstrated that nineteen patients experienced increased IL-6 levels accompanied by weight gain. A decrease in IL-6 is thought to be associated with

the effects of TB infection. IL-6, along with TNF-α and IL-1 β , functions to initiate the inflammatory response in the acute phase. Mycobacterium tuberculosis can control the host's IL-6 production to inhibit interferon type I, thus contributing to the progression of TB [32]. The results of this study also align with previous research. Study by Maseko et al. (2023) showed that low IL-6 levels indicate an acute infection, while high levels are typical for a chronic condition characterized by the presence of lung cavitation [27]. Another possible cause could also be COVID-19 infection [33]. Differences in the timing of TB treatment can also influence whether IL-6 levels remain high before and after therapy, as the patients who start treatment later tend to have higher IL-6 levels compared to those who start therapy earlier [34]. Other factors such as patient compliance influencing the body's inflammatory response contributed to the unsignificant level of IL-6 as well [35]. Also, IL-6 was known to interfere with IGF-1 and IL-10 signaling pathways [36]. IGF-1 is known to play a role in the growth process, while IL-10 — in the immune response to Mycobacterium tuberculosis [37].

This study shows that providing high-calorie formula milk with ONS is effective in improving children's nutritional status, as demonstrated by significant increases in weight and height. However, this intervention did not significantly impact hemoglobin and IL-6 levels. Several possibilities may explain this finding. First, the 90-day intervention duration may not have been sufficient to influence biochemical parameters affected by chronic inflammatory conditions such as IL-6 and hemoglobin, which tend to change more slowly. Second, IL-6 and hemoglobin levels are significantly influenced by the severity of inflammation and the presence of active infection. Even if a subject has been diagnosed with TB, comorbidities or other subclinical infections that are not thoroughly evaluated may influence the results, given that the laboratory examination focuses solely on TB [38].

Conclusions

Oral nutritional supplements intervention for 90 days did not affect IL-6 and Hb levels in children with TB.

Acknowledgment

The authors were grateful to the parents of subjects who participated in this research until the last day.

References

- 1. Soliman A, De Sanctis V, Alaaraj N, et al. Early and long-term consequences of nutritional stunting: from childhood to adulthood. Acta Biomed. 2021;92:1-12.
- 2. Wicaksono RA, Arto KS, Mutiara E, et al. Paediatrica Indonesiana. Paediatr Indones. 2021;61:12-19.
- 3. Bustami B, Ampera M. The identification of modeling causes of stunting children aged 2–5 years in Aceh province, Indonesia (data analysis of nutritional status monitoring 2015). Open Access Maced J Med Sci. 2020;8:657-663.
- 4. Marlina H, Triana A, Fanora E. Causes of stunting in toddlers: literature review. Int J Multidiscip Res Growth Eval. 2022;138-142.
- 5. Permatasari DF, Sumarmi S. Differences of born body length, history of infectious diseases, and development between stunting and non-stunting toddlers. J Berk Epidemiol. 2018;6:182.

- 6. Ait-Khaled N, Enarson DA. Tuberculosis: a manual for medical students. Geneva, Switzerland: WHO; 2005.
- 7. World Health Organization (WHO). Global tuberculosis report: executive summary 2020. Geneva, Switzerland: WHO; 2020.
- 8. Jaganath D, Mupere E. Childhood tuberculosis and malnutrition. J Infect Dis. 2012;206:1809-1815.
- 9. Padmapriyadarsini C, Shobana M, Lakshmi M, et al. Undernutrition and tuberculosis in India: situation analysis and the way forward. Indian J Med Res. 2016;144:11-20.
- 10. Gwela A, Mupere E, Berkley JA, et al. Undernutrition, host immunity and vulnerability to infection among young children. Pediatr Infect Dis J. 2019:38:e175-e177
- 11. Hossain M, Nahar B, Haque MA, et al. Serum adipokines, growth factors, and cytokines are independently associated with stunting in Bangladeshi children. Nutrients. 2019;11:1827.
- 12. Mohseni M, Ahmadi S, Asadi H, et al. A systematic review and meta-analysis of the prevalence of malnutrition among 6–14-year-old children in Iran. Int J Prev Med. 2022;13:138.
- 13. Alaaraj N, Soliman A, Rogol AD. Growth of malnourished infants and children: how is inflammation involved? Expert Rev Endocrinol Metab. 2021;16:213-216.
- 14. Holt LE, Snyderman SE. Protein and amino acid requirements of infants and children. Nutr Abstr Rev. 1965;35:1-13.
- 15. Philipson TJ, Snider JT, Lakdawalla DN, et al. Impact of oral nutritional supplementation on hospital outcomes. Am J Manag Care. 2013;19:121-128.
- 16. Pham DT, Ninh NT, Hoang TN, et al. The effectiveness of oral nutritional supplements improves the micronutrient deficiency of Vietnamese children with stunting. Arch Pharm Pract. 2020;11:7-13.
- 17. Uí Dhuibhir P, Collura N, Walsh D. Complete oral nutritional supplements: dietitian preferences and clinical practice. J Diet Suppl. 2019;16:40-50.
- 18. Collins C, Tucker C, Walton C, et al. Pharmacy technician review of oral nutritional supplements (ONS) within care homes. Pharmacy. 2019:7:28.
- 19. Yeung SSY, Lee JSW, Kwok T. A nutritionally complete oral nutritional supplement powder improved nutritional outcomes in free-living adults at risk of malnutrition: a randomized controlled trial. Int J Environ Res Public Health. 2022;19. doi: 10.3390/ijerph191811354.
- 20. Thomas TA. Tuberculosis in children. Pediatr Clin North Am. 2018;64:893-909.
- 21. Tadesse F, Mitiku H, Girma S, et al. Magnitude of undernutrition and associated factors among adult tuberculosis patients attending public health facilities in Haramaya District, Eastern Ethiopia. BMC Pulm Med. 2023;23:42.
- 22. Wassie EG, Tenagashaw MW, Tiruye TY. Women empowerment and childhood stunting: evidence from rural northwest Ethiopia. BMC Pediatr. 2024;24:30.
- 23. Karki A. Prevalence and determinants of stunting among children under 5 years in remote Nepal. Reprod Female Child Heal. 2023;2: 233-241.
- 24. Laksono AD, Wulandari RD, Amaliah N, et al. Stunting among children under two years in Indonesia: does maternal education matter? PLoS One. 2022;17:1-11.
- 25. Téllez-Navarrete NA, Ramón-Luing LA, Muñoz-Torric M, et al. Malnutrition and tuberculosis: the gap between basic research and clinical trials. J Infect Dev Ctries. 2021;15:310-319.
- 26. Gao Z, Liu Q, Deng Q, et al. Growth and anemia among children with tuberculosis infection at different sites in Southwest China. Front Pediatr. 2023;11:1-9.

- 27. Maseko TG, Ngubane S, Letsoalo M, et al. Higher plasma interleukin-6 levels are associated with lung cavitation in drug-resistant tuberculosis. BMC Immunol. 2023;24:26.
- 28. Ren Z, Zhao F, Chen H, et al. Nutritional intakes and associated factors among tuberculosis patients: a cross-sectional study in China. BMC Infect Dis. 2019;19:1-8.
- 29. Mithra P, Khatib MN, Sinha AP, et al. Interventions for addressing anemia among children and adolescents: an overview of systematic reviews. Front Pediatr. 2021;8:549549.
- 30. Martinez L, Gray DM, Botha M, et al. The long-term impact of early-life tuberculosis disease on child health. Am J Respir Crit Care Med. 2023:207:1080-1088
- 31. Chaparro CM, Suchdev PS, Nutrition I. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann NY Acad Sci. 2019;1450:15-31.
- 32. Boni FG, Hamdi I, Koundi LM, et al. Cytokine storm in tuber-culosis and IL-6 involvement. Infect Genet Evol. 2022;97. doi: 10.1016/j. meegid.2021.105166.
- 33. Vita G, Syambani Z. Interleukin-6 levels in children developing SARS-CoV-2 infection. Pediatr Neonatol. 2020;61:253-254.

- 34. Wang Y, Wang L, Wen Z, et al. High IL-6 and VEGF-A levels correlate with delayed wound healing in cervical lymph node tuberculosis patients. Int J Tuberc Lung Dis. 2018;22:1227-1232
- 35. Vivekanandan MM, Adankwah E, Aniagyei W, et al. Plasma cytokine levels characterize disease pathogenesis and treatment response in tuberculosis patients. Infection. 2023;51:169-179.
- 36. Succurro E, Andreozzi F, Sciaqua A, et al. Reciprocal association of plasma IGF-1 and interleukin-6 levels with cardiometabolic risk factors in nondiabetic subjects. Diabetes Care. 2008;31:1886-1888
- 37. Redford P, Murray P, O'Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 2011:4:261-270.
- 38. Fâcă AI, Udeanu DI, Arsene AL, et al. Nutritional deficiencies and management in tuberculosis: pharmacotherapeutic and clinical implications. Nutrients. 2025;17:1878.

Received 11.09.2025 Revised 26.10.2025 Accepted 04.10.2025

Information about authors

Marisa Tulus Purnomo, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia Nur Aisiyah Widjaja, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia Retno Asih Setyoningrum, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Authors' contributions. Marisa Tulus Purnomo — principal investigator, conceptualized and designed the study, prepared the draft of the manuscript and reviewed the manuscript; Nur Aisiyah Widjaja — led the data collection, advised on the data analysis and interpretation and reviewed the manuscript; Retno Asih Setyoningrum — analyzed the data and reviewed the manuscript.

Marisa Tulus Purnomo, Nur Aisiyah Widjaja, Retno Asih Setyoningrum Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia

Рівні гемоглобіну та IL-6 у дітей із затримкою росту і туберкульозною інфекцією, які отримують пероральні харчові добавки: дослідження з одногруповим дизайном і аналізом до та після втручання

Резюме. Актуальність. Недоїдання, спричинене туберкульозом, часто зустрічається в дітей і супроводжується дефіцитом мікроелементів через нестачу поживних речовин, зокрема залізодефіцитною анемією. Недоїдання також викликає зниження рівня інтерлейкіну (IL)-6, що робить дітей вразливими до інфекції. Мета: проаналізувати вплив пероральних харчових добавок на рівень гемоглобіну (Hb), IL-6, приріст маси й довжини тіла в дітей із затримкою росту і туберкульозом. Матеріали та методи. Преекспериментальне дослідження з одногруповим дизайном і аналізом до та після втручання проводилося з жовтня 2022 року до липня 2023 року в приватній лікарні м. Сурабая (Східна Ява, Індонезія) за участю дітей віком від 12 до 60 місяців із затримкою росту й туберкульозною інфекцією. Статистичний аналіз включав описову статистику (середнє значення ± стандартне відхилення або п (%)),

Т-критерій для незалежної вибірки або U-критерій Манна — Вітні, а також Т-критерій парних вибірок або критерій рангових знаків Вілкоксона залежно від нормальності розподілу. **Результати.** У дослідженні взяли участь 29 дітей, середній вік яких становив $25,40\pm11,30$ місяця. 58,62% пацієнтів були віком до 24 місяців, а 41,38% — від 25 до 60 місяців. Суттєвої різниці в рівнях IL-6 та Hb до та після втручання не спостерігалося. Середній уміст Hb на початку дослідження становив $12,07\pm1,22$ мг/дл, після — $12,00\pm1,09$ мг/дл, тоді як для IL-6 ці показники дорівнювали відповідно $125,76\pm116,87$ мкг/л та $122,41\pm104,43$ мкг/л (р = 0,441). **Висновки.** Прийом пероральних харчових добавок протягом 90 днів не вплинув на рівень IL-6 та Hb в дітей із туберкульозом.

Ключові слова: туберкульоз; затримка росту; інтерлейкін-6; анемія; гемоглобін

Оригінальні дослідження / Original Researches

УДК 616.33/.34-002-008.6-08-053.2/.36]:001.83

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1918

Личковська О.Л.¹, Семен М.О.¹, Кулачковська І.Ю.¹, Семен В.Д.² ¹ДНП «Львівський національний медичний університет імені Данила Галицького», м. Львів, Україна ²КНП ЛОР «Клінічний центр дитячої медицини», м. Львів, Україна

Функціональні гастроінтестинальні розлади у дітей раннього віку: чому важливі раннє втручання і мультидисциплінарний підхід

Резюме. Актуальність. Згідно з біопсихосоціальною моделлю формування функціональних гастроінтестинальних розладів (Φ ГІР), окрему групу факторів ризику становлять чинники, що діють у ранньому дитинстві. Серед них фігурує стрес немовляти, спричинений поведінкою батьків. Як відомо, найбільш ранніми ознаками раннього стресу є розлади регуляції та функціональні гастроінтестинальні розлади немовлят. Метою дослідження було вивчення зв'язку ранніх проявів стресу немовлят, а саме розладів регуляції та $\Phi \Gamma IP$ дітей раннього віку, з формуванням ФГІР у старших дітей. **Матеріали та методи.** Дослідження охопило 132 дитини з ФГІР (основна група — ОГ), з них 68 дітей зі синдромом подразненого кишечника (ОГІ) і 64 дитини з функціональною диспепсією (ОГ2). Групу контролю (ГК) становили 60 практично здорових дітей. Проведено поглиблений збір анамнезу за методикою Family history щодо першого року життя дитини. Прояви раннього стресу оцінювали за наявністю ознак розладів регуляції немовлят і ФГІР дітей раннього віку за принципом «є/немає». **Результати.** В анамнезі дітей з $O\Gamma$ усі розлади регуляції та $\Phi\Gamma$ ІР на першому році життя виявляли частіше, ніж у Γ К. Вірогідної різниці частоти $\Phi \Gamma IP$ і розладів регуляції немовлят між $O\Gamma 1$ та $O\Gamma 2$ не було. В анамнезі дітей $O\Gamma$ кольку немовлят констатовано в 39 (29,5%) випадках, у 7 з них (5,3%) вона утримувалася понад 3 місяці; зригування — у 42(31,8%), у 8(6,1%) з них це привело до втрати ваги; у 31(25,3%) дитини — розлади випорожнень (переважно схильність до запорів). Розлади сну спостерігалися в анамнезі в 30 (22,7 %) дітей з ОГ; надмірна збудливість, тривалий плач, гіперестезія — у 31 (23,5 %) дитини з Φ ГІР. Домінували 1—2 розлади в ОГ і ГК, 3—4 розлади виявили в анамнезі у 12 дітей з ОГ і лише в однісї дитини з ГК. Свій емоційний стан протягом першого року життя дитини більшість матерів з ОГ(81-61,4%) описували як тривожний, скаржилися на стійке відчуття втоми, невпевненості в собі та власній спроможності добре доглядати за дитиною. **Висновки. Р**озлади регуляції і ФГІР дітей раннього віку є чинником ризику формування ФГІР у старших дітей. Не виявлено зв'язку окремих варіантів розладів регуляції та ФГІР дітей раннього віку з певними функціональними розладами в старших дітей. Раннє втручання, що передбачає мультидисциплінарний підхід до ведення немовляти з ознаками стресу, може послабити або навіть нівелювати цей вагомий чинник ризику формування ФГІР у старших дітей. Ключові слова: діти; функціональні гастроінтестинальні розлади; стрес; фактори ризику

Вступ

Згідно з Римським консенсусом IV (РК IV), функціональні гастроінтестинальні розлади (ФГІР) розглядаються як порушення цереброінтестинальної взаємодії, що призводить до порушення моторики, вісцеральної гіперчутливості, функції та проникності слизової оболонки, змін імунної системи кишки, складу мікрофлори [1]. Такі розлади можуть зустрічатись у будь-яких комбінаціях і супроводжуються симптомами з боку травної системи та центральної нервової системи (ЦНС). РК IV розглядає ФГІР з позицій біопсихосоціальної моделі медицини. На відміну від етіопатогенетичної, біопсихосоціальна модель трактує хворобу як результат складної взаємодії чинників ризику та протекції, що перебу-

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

Для кореспонденції: Личковська Олена Львівна, доктор медичних наук, професор, завідувач кафедри пропедевтики педіатрії та медичної генетики, ДНП «Львівський національний медичний університет імені Данила Галицького», вул. Пекарська, 69, м. Львів, 79010, Україна; e-mail: olychkovska@gmail.com

For correspondence O. Lychkovska, MD, PhD, DSc, Professor, Head of the Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Ukraine, Pekarska st., 69, Lviv, 79010, Ukraine; e-mail: olychkovska@gmail.com

вають у постійній тісній взаємодії. Набір таких факторів індивідуальний для кожного пацієнта.

Однак з огляду на тісний взаємозв'язок факторів ризику, навіть таких, що різняться за своєю природою, нівелюючи дію одного з них, ми можемо виключити або хоча б послабити дію інших. З огляду на це елімінація одного чинника може полегшити перебіг розладу в цілому або навіть запобігти його формуванню. У відомій схемі Дугласа Дроссмана (рис. 1) перелічені основні психосоціальні й фізіологічні чинники, які впливають на порушення функціонування осі «ЦНС — травна система». Привертає увагу ще одна група чинників, що впливають і на психосоціальні, і на фізіологічні і, як зазначено на схемі, є «ініціюючими», — це чинники, які діють у ранньому дитинстві.

Серед них ε такі, на які ми не маємо впливу (генетика, перенесені інфекції, антибіотикотерапія), однак ε і ті, що підлягають корекції, — це поведінка батьківської пари, яка може викликати стрес у немовляти.

Існують ситуації, які явно загрожують формуванням тяжкого стресу в немовляти, як-от насильство, у тому числі сексуальне, позбавлення їжі, занедбаність. Переважно це має місце в дисфункціональних сім'ях, які, на щастя, зустрічаються не так часто. При цьому ε набагато більш поширені, однак менш помітні ситуації, що часто залишаються поза увагою лікаря. Пов'язані вони з надмірною тривожністю, страхом, депресією матері, що обмежує її рефлексивні функції, тобто здатність до емоційного контакту з дитиною. Через це наростає тривога і страх у самого немовляти. Якщо такий стан триває довго, дитина переживає стрес. Наслідки такого стресу можуть супроводжувати дитину, а згодом і дорослу людину протягом усього життя, впливаючи на її фізичне і ментальне здоров'я, когнітивні й соціальні функції. І саме такий стрес, не завжди помітний на перший погляд, але тривалий, стає тим чинником,

який впливає на формування і подальше функціонування осі «ЦНС — кишечник».

Тривалий ранній стрес викликає зміни в гіпокампі, мигдалині й префронтальній корі [2—4], призводить до порушення нейропластичності та нейрональних зв'язків між цими структурами [5, 6], спричинює зміни в автономній нервовій системі, гіпоталамо-гіпофізарно-наднирковій системі [7, 8], а також зміни імунної системи й активності запальної відповіді [9].

Найбільш ранніми ознаками стресу немовляти є розлади регуляції та функціональні гастроінтестинальні розлади. Поява в дитини соматичних симптомів призводить до наростання тривоги в матері і, відповідно, в дитини, формуючи так зване замкнене коло. Тому цілком логічно припустити, що перелічені розлади можна розглядати як перші ознаки дисрегуляції осі «ЦНС — травна система», а отже, як фактор ризику формування Φ ГІР у старших дітей.

Існують і проспективні, і ретроспективні дослідження, у яких вивчали зв'язок раннього стресу з формуванням Φ ГІР у старших дітей і дорослих. Частина з них підтверджує цю гіпотезу [10], інші не знаходять зв'язку раннього стресу з Φ ГІР [11].

Метою даного дослідження було вивчення зв'язку ранніх проявів стресу немовлят, а саме розладів регуляції та ФГІР дітей раннього віку, з формуванням ФГІР у старших дітей.

Матеріали та методи

Нами проведено ретроспективне дослідження, яке передбачало поглиблений збір анамнезу, що стосувався першого року життя дитини. Дослідження виконувалося на базі Клінічного центру дитячої медицини лікарні «Охматдит» (м. Львів) протягом 2018-2023 років і охопило 132 дитини з діагностованими за РК IV ФГІР (основна група — ОГ), з них 68 дітей із синдромом

Рисунок 1. Біопсихосоціальна концептуальна модель формування ФГІР (адаптовано за [1])

подразненого кишечника (СПК — основна група 1 — ОГ1) і 64 дитини з функціональною диспепсією (ФД основна група $2 - O\Gamma 2$). Усі діти були госпіталізовані в клініку патології дітей старшого віку з огляду на те, що в них виявляли хоча б один симптом «червоних прапорців» або амбулаторне лікування не давало ніякого позитивного ефекту, а отже, знову ж таки згідно з РК IV, вони потребували поглибленого обстеження для виключення органічної патології та підбору індивідуальної терапії під контролем мультидисциплінарної команди фахівців. Іншими критеріями включення до однієї з груп був вік дитини 6-12 років (латентний період), відсутність будь-яких інших захворювань, інформована згода батьків на участь у дослідженні. Критерії виключення з дослідження: вік дитини до 6 або понад 12 років; супутні вроджені й набуті захворювання; відсутність згоди батьків і/або дитини на участь у дослідженні; діти з дисфункціональних сімей. Групу контролю (ГК) становили 60 практично здорових дітей відповідного віку. Вірогідної різниці між ОГ1, ОГ2 і ГК щодо віку і статі дітей не було (табл. 1).

Дослідження схвалено комісією з питань етики наукових досліджень ЛНМУ ім. Данила Галицького (протокол № 11 від 23.10.2023).

3 метою детального вивчення періоду раннього дитинства використано описово-феноменологічну методику збору анамнезу життя Family history, що передбачає опитування одного з батьків пацієнта, частіше матері (на відміну від Family study, що передбачає обов'язкове інтерв'ю всіх членів родини). Опитування стосувалося не лише стану здоров'я, наявності в родині схильності до тієї чи іншої гастроентерологічної патології, функціональних і психосоматичних розладів. Матір/батька просили описати особистісні й поведінкові особливості членів родини, стосунки в сім'ї. За результатами обстеження складалась розширена сімейна історія та генограма, виділялися найбільш характерні особливості кожного члена сім'ї та їхніх стосунків. Особливу увагу приділяли опису психоемоційного стану матері протягом першого року життя дитини, її позиції в родині на різних етапах розвитку. Ще один акцент було зроблено на ставленні до хворих членів родини, схильності до катастрофізації мислення, «поведінки хворої людини». Так було складено перелік найбільш типових ознак сімей пробандів, їхніх матерів і батьків, стосунків між членами родини. За результатами опитування прояви раннього стресу оцінювали за наявністю ознак розладів регуляції немовлят (порушення сну, надмірна збудливість, тривалий безпричинний плач, відмова від їжі) та ФГІР дітей раннього віку (зригування, малюкова колька, функціональні запори/діарея) за принципом «є/немає». Методика Family history широко застосовується в практичній і науковій діяльності для виявлення факторів ризику виникнення Φ ГІР у дітей [12].

Статистичну обробку отриманих даних проводили за допомогою програмного забезпечення Microsoft Excel 2016 і GraphPad Prism 5 та загальноприйнятих методів математичної статистики. Якісні змінні подані у вигляді відсотків. Для порівняння частотних показників незалежних груп використали критерій хі-квадрат Пірсона (χ^2) без поправки Єйтса на безперервність. З метою виявлення асоціацій між ФГІР і розладами регуляції немовлят в анамнезі та виникненням СПК і ФД розраховували показник відношення шансів (OR) з 95% довірчим інтервалом (ДІ). Величину р < 0,05 вважали статистично вірогідною.

Результати

У нашому дослідженні в анамнезі дітей з ОГ усі розлади регуляції та Φ ГІР на першому році життя виявляли частіше, ніж у дітей з ГК (табл. 2). Домінували функціональні розлади травлення в обох групах.

Кольку немовлят констатовано в анамнезі 39 (29,5 %) дітей з ОГ і 6 (10,0 %) дітей з ГК, однак вона відрізнялася не лише за частотою, але й за перебігом. Якщо в ГК напади крику в усіх дітей припинилися до 3-місячного віку, то в 7 із 132 (5,3 %) дітей з основних груп клініка утримувалася до 4-6 місяців.

Зригування відносили до Φ ГІР немовлят, якщо за частотою та об'ємом вони виходили поза межі, означені як happy spitters. Такі розлади в анамнезі були в 42 (31,8 %) дітей з ОГ. До втрати ваги зригування привели у 8 (6,1 %) немовлят з основних груп і не привели в жодної дитини з ГК.

Розлади випорожнень спостерігали в анамнезі в 31 (25,3 %) дитини з ОГ і 7 (11,7 %) дітей з ГК, схильність до запорів домінувала в обох групах.

До порушень сну відносили тривалий (понад одну годину) період засинання, дуже часті пробудження протягом ночі (частіше ніж що дві години) з тривалими періодами неспання і плачу, інверсію сну або ранню відмову від денного сну. Розлади сну спостерігалися в анамнезі в 30 (22,7 %) дітей з ОГ і лише в 5 (8,3 %) практично здорових дітей. Про надмірну збудливість, тривалий плач, гіперестезію повідомляли батьки 31 (23,5 %) дитини з ФГІР і 6 дітей (10,0 %) з ГК.

Відмову від їжі на першому році життя виявили в одної (0.8%) дитини з ОГ і не виявили в жодної дитини з ГК. Серед дітей з ОГ частіше спостерігалося раннє

Таблиця 1. Характеристика обстежених пацієнтів із СПК (ОГ1), ФД (ОГ2) і контрольної групи

Показники	ΟΓ1 (n = 68)	ΟΓ2 (n = 64)	KΓ (n = 60)
Хлопчики, n (%) Дівчатка, n (%) Вік (років), mean ± SD	36 (53) 32 (47) 8,2 ± 1,9	35 (54,7) 29 (45,3) 8,4 ± 1,7	32 (53,3) 28 (46,7) 8,6 ± 1,9
Середня тривалість СПК (років), mean ± SD	2,2 ± 1,1	1,9 ± 1,0	-

(до 3-місячного віку) переведення дитини на штучне вигодовування, однак статистично вірогідної різниці порівняно з ГК не виявлено.

При порівнянні частоти $\Phi\Gamma$ IP і розладів регуляції немовлят вірогідної різниці частоти $\Phi\Gamma$ IP і розладів регуляції немовлят між дітьми з СПК (ОГ1) і Φ Д (ОГ2) не було, тобто специфічних розладів для окремих варіантів $\Phi\Gamma$ IP ми не виявили (табл. 3).

Часто в анамнезі пацієнтів спостерігали комбінацію окремих розладів регуляції. Домінували 1—2 розлади в обох групах (рис. 2), 3—4 розлади виявили в анамнезі у 12 дітей з ОГ і лише в однієї дитини з ГК.

Відрізнялися ОГ і ГК також за сприйняттям батьками проблем немовляти (табл. 4). Якщо в ГК батьки описували перший рік життя дитини загалом у позитивних тонах, а розлади регуляції — як тимчасові труднощі, в ОГ такі проблеми часто сприймалися як катастрофа, безвихідь. Одна сімейна пара повідомила, що відмовилася від народження другої дитини через страх ще раз пережити кольки в малюка. Свій емоційний стан протягом першого року життя дитини більшість матерів з ОГ (81 — 61,4 %) описували як тривожний, що супроводжувався відчуттям невпевненості в собі та власній спроможності добре доглядати за дитиною, бути доброю мамою, страхом, що з дитиною щось станеться. Серед опитаних матерів 84 (63,6 %) скаржилися на стійке відчуття втоми. Через відчуття невпевненості

часто зверталися до лікарів, проходили повторні обстеження й курси лікування з обмеженим і короткочасним ефектом. Обтяжений сімейний анамнез щодо ФГІР виявлено в 92 сім'ях (69,7 %). Натомість теплі, підтримуючі стосунки частіше виявляли в сім'ях дітей ГК з високим ступенем вірогідності.

Обговорення

Немовлята тотально залежні від своїх доглядальників, і ця залежність настільки очевидна, що іноді залишається поза увагою. Відразу після народження виникає взаємодія між матір'ю і дитиною. Дитина використовує так звані прив'язуючі моделі поведінки (attachment behavior) — плач, усмішка, лепет, наслідування. Реагуючи на ці сигнали, мати змінює свою поведінку: усміхається, стимулює розмовою, дотиком дитину, яка млява, але заспокоює дитину, яка збуджена, плаче. Протягом кількох тижнів ці відносини досягають синхронності завдяки тому, що мати змінює свою поведінку, реагуючи на дитину. Мета цих відносин полягає в тому, щоб і в матері, і в дитини виникало відчуття дієвості. Мати щаслива, що може викликати ту чи іншу поведінку дитини, що дитина реагує на неї. Дитина починає усвідомлювати, що теж може впливати на поведінку матері, а отже, і на інших людей. Таким чином при добрій взаємодії матері і дитини спрацьовує механізм взаємної дієвості: кожен відчуває, що має

Таблиця 2. Частота ФГІР і розладів регуляції немовлят в анамнезі дітей із ФГІР старшого віку і практично здорових дітей

тпрактично эдорових дітей						
	Часто	Частота, %				
Ознака	Основна група (n = 132)	Контрольна група (n = 60)	χ²	Р	OR	95% ДІ
Колька немовлят — з них тривалістю понад 3 міс.	29,5 5,3	10,0 0	12,50 5,13	0,0004* 0,024*	3,857 11,58	1,77–8,42 0,63–212,3
Зригування — з них із втратою ваги	31,8 6,1	16,7 0	6,08 6,19	0,014* 0,013*	2,298 13,83	1,18–4,49 0,77–249,0
Запор/пронос	25,3	11,7	5,60	0,018*	2,444	1,15–5,19
Порушення сну	22,7	8,3	8,59	0,003*	3,435	1,45–8,12
Надмірна збудливість, плач, гіперестезія	23,5	10	5,39	0,020*	2,512	1,13–5,56
Відмова від їжі	0,8	0	1,01	0,316	3,030	0,12-75,34

Примітки: P— значимість відмінностей між контрольною та дослідною групами; *— статистично вірогідне значення.

Таблиця 3. Частота ФГІР і розладів регуляції немовлят в анамнезі дітей з СПК (ОГ1) і ФД (ОГ2)

Ознака	Частота, %		.,2	Р	OR	059/ FI
Ознака	ΟΓ1 (n = 68)	ΟΓ2 (n = 64)	χ²	F	Oh	95% ДІ
Колька немовлят	32,4	26,6	0,60	0,438	1,272	0,69–2,34
Зригування	30,9	32,8	0,09	0,762	0,912	0,50-1,65
Запор/пронос	26,5	20,3	1,36	0,243	1,479	0,76–2,86
Порушення сну	22,1	23,4	0,03	0,866	0,944	0,49–1,83
Надмірна збудливість, плач, гіперестезія	22,1	25,0	0,25	0,617	0,846	0,44–1,63
Відмова від їжі	1,5	0	2,02	0,155	5,102	0,24–107,7

Примітка: Р — значимість відмінностей між контрольною та дослідною групами.

певний вплив на поведінку іншого. Так формується базова довіра або недовіра до світу.

Крім цього, на першому році життя в дитини починає формуватися регуляція афектів. Батьки (мати) здійснюють афективну регуляцію дитини, підтримуючи позитивне самопочуття і коригуючи негативне. Інтеграція дитиною причинно-наслідкових зв'язків між своєю поведінкою та її наслідками сприяє виникненню й укоріненню елементів афективної саморегуляції. Так у дитини формується відчуття самоефективності («я можу»).

Зворотний варіант, якщо цього не відбувається: у дитини починає формуватися так звана вивчена безпорадність. Якщо поведінка матері й дитини не синхронізується, дитина переживає тривалий стрес з усіма наслідками, що стосуються не лише ментального, але й соматичного здоров'я. Такий несприятливий досвід є доволі поширеним явищем: за даними великомасштабного епідеміологічного дослідження несприятливих подій у ранньому дитинстві, приблизно 65 % осіб у США пережили принаймні одну, а 12,5 % — аж чотири несприятливі події в ранньому віці.

Доведено, що внаслідок надміру кортизолу, викликаного хронічним стресом, виникають атрофічні зміни в гіпокампі [13]. У дорослих, які пережили довготривалий ранній стрес, об'єм гіпокампа вірогідно менший, що призводить до порушення консолідації пам'яті, тобто переходу короткочасної пам'яті в довготривалу, крім цього, гіпокамп задіяний у механізмах формування емоцій [14].

Порушення нейрональних зв'язків «мигдалина — префронтальна кора» призводить до порушення усвідомлення й висловлення емоцій [15]. Це сприяє формуванню стану, який називається «алекситимія». Відомо, що осередком емоцій є лімбічна система. Енергія афекту з лімбічної системи каналізується у 2 напрямках: у префронтальну кору, за рахунок чого емоція усвідомлюється, і в автономну нервову систему (АНС), за рахунок чого виникають соматичні еквіваленти емоцій (почервоніння шкіри чи блідість, тахікардія, спазми гладкої мускулатури тощо). Якщо префронтальна кора має мало нейрональних зв'язків з лімбічною системою, емоція не усвідомлюється, однак має виражений вегетативний компонент. Так можуть виникати соматичні симптоми. І так формується схильність до соматизації — переживання емоційного дистресу на соматичному рівні.

Спричинені раннім стресом зміни нейрональної пластичності в префронтально-стріарній дофаміновій системі спричинюють стани зі спектра «депресія — тривожність» [16, 17]. Ранній стрес призводить також до підвищеної активності й дисрегуляції гіпоталамогіпофізарно-надниркової системи, появи соматичних симптомів [18] і підвищення тривожності [19].

Якщо виокремити всі перелічені психоемоційні розлади, пов'язані з раннім стресом, ми отримаємо практично повний список коморбідних психоемоційних розладів при Φ ГІР у старших дітей і дорослих — тривожність, депресія, алекситимія, схильність до

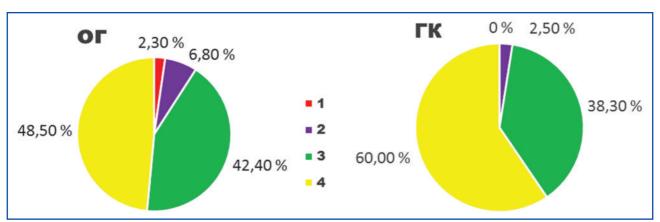


Рисунок 2. Поєднання розладів регуляції в дітей основної та контрольної груп: 1—4 розлади; 2—3 розлади; 3—2 розлади; 4—1 розлад

Таблиця 4. Частота мікросоціальних чинників ризику та протекції формування ФГІР у дітей

	Часто	Частота, %				
Ознака	Основна група (n = 132)	Контрольна група (n = 60)	χ²	Р	OR	95% ДІ
Надмірна тривожність у матері	61,4	18,3	38,69	< 0,0001*	7,125	3,72–13,64
Астенія (постійне відчуття втоми)	63,6	23,3	34,20	< 0,0001*	5,952	3,20–11,06
«Катастрофічне» мислення	49,6	11,7	33,75	< 0,0001*	7,333	3,57–15,06
Обтяжений сімейний анамнез щодо ФГІР	69,7	26,7	37,01	< 0,0001*	6,309	3,41–11,67
Теплі, підтримуючі стосунки в сім'ї	29,5	60	18,18	< 0,0001*	0,286	0,16–0,51

Примітка: Р — значимість відмінностей між контрольною та дослідною групами.

дистресу (через відсутність ефективних стратегій подолання стресу), переживання дистресу на соматичному рівні (схильність до соматизації), вивчена безпорадність (відсутність досвіду самоефективності), «поведінка хворої людини». З іншого боку, різні експериментальні й клінічні дослідження виявили вплив систем, через які відбувається реалізація стресу (гіпоталамо-гіпофізарно-надниркова система, АНС, імунна система, нейромедіатори), на формування й сигналізацію осі «ЦНС — травна система» [20–22]. Тобто ранній стрес можна розглядати як основу або сполучну ланку і для формування стійких психоемоційних розладів, і для порушення функціонування осі «ЦНС — кишечник». З позиції клінічної практики проблемою є діагностика раннього стресу немовляти, якщо останній пов'язаний не з явною депривуючою поведінкою батьківської пари, а з надмірною тривожністю матері. Адже на перший погляд тривожна мати видається особливо турботливою, дбайливою, відданою дитині. Саме тому розлади регуляції та ФГІР немовлят, бувши першими проявами раннього стресу, повинні спонукати клініциста до раннього мультидисциплінарного втручання, метою якого є як усунення симптомів дисрегуляції в дитини, так і гармонізація стосунків матері й немовляти, підвищення чутливості матері до потреб дитини і, відповідно, зниження тривожності і матері, і дитини. З огляду на це важливим є розпізнавання проблеми лікарем першого контакту, його вміння провести психоедукаційну бесіду, забезпечити спільне ведення дитини та сім'ї командою фахівців (соматичний лікар, психолог, психотерапевт, соціальний працівник). Проблема раннього стресу потребує розробки стратегії профілактики й системи ефективних практичних втручань для запобігання несприятливому досвіду в ранньому дитинстві.

Висновки

Отримані нами результати доводять, що розлади регуляції немовлят і ФГІР дітей раннього віку можна розглядати як чинник ризику формування ФГІР у старших дітей. Нами не виявлено зв'язку окремих варіантів розладів регуляції та ФГІР дітей раннього віку з певними функціональними розладами травлення в старших дітей. Можна припустити, що раннє втручання, яке передбачає мультидисциплінарний підхід до ведення немовляти з ознаками стресу, може послабити або навіть нівелювати цей вагомий чинник ризику формування ФГІР у старших дітей.

Обмеження даного дослідження та перспективи подальшого пошуку

Дане дослідження є спробою розглянути ФГІР і розлади регуляції немовлят як фактор ризику порушеного формування осі «ЦНС — кишечник» і, відповідно, ФГІР у старших дітей. Така гіпотеза виникла на основі клінічного досвіду авторів, який дозволив звернути увагу на високу частоту неблагополучного грудного періоду серед дітей з ФГІР. Безумовно, для більш точного вивчення особливостей раннього дитинства необхідні дослідження з більшими вибірками і особливо проспективні дослідження, які дадуть можливість виявити

ознаки раннього стресу «в реальному часі» й простежити його наслідки в різні періоди дитинства, оцінити ефективність різних варіантів лікування (традиційна медикаментозна терапія vs ведення пацієнта командою фахівців із залученням родини). Враховуючи, що чинники ризику формування ФГІР, які стосуються раннього дитинства, у переважній більшості випадків є керованими, мультидисциплінарний підхід і раннє втручання перспективні в плані зменшення частоти ФГІР у дітей, а також можуть сприяти соціальному благополуччю дитини, її адекватному самосприйняттю і самооцінці.

Конфлікт інтересів. Автори заявляють про відсутність конфлікту інтересів і власної фінансової зацікавленості при підготовці даної статті.

Інформація про фінансування. Це дослідження профінансовано з державного бюджету і є фрагментом планової науково-дослідної роботи кафедри пропедевтики педіатрії та медичної генетики ДНП «Львівський національний медичний університет імені Данила Галицького» за темою «Встановлення особливостей перебігу спадкової патології та мультифакторних захворювань у дітей, що перенесли COVID-19, в умовах запровадженого військового стану» (номер державної реєстрації 0123U101701).

Внесок авторів. Личковська О.Л. — концепція та дизайн дослідження, написання статті; Семен М.О. — написання статті, аналіз даних; Кулачковська І.Ю. — аналіз даних, написання статті; Семен В.Д. — збір та опрацювання даних.

Список літератури

- 1. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology. 2016:S0016-5085(16)00223-7. doi: 10.1053/j.gastro.2016.02.032.
- 2. Kuenzel E, Al-Saoud S, Fang M, Duerden EG. Early childhood stress and amygdala structure in children and adolescents with neurodevelopmental disorders. Brain Struct Funct. 2025;230(1):29. doi: 10.1007/s00429-025-02890-z.
- 3. Hanson JL, Nacewicz BM. Amygdala allostasis and early life adversity: considering excitotoxicity and inescapability in the sequelae of stress. Front Hum Neurosci. 2021;15:624705. doi: 10.3389/fnhum.2021.624705.
- 4. Fogelman N, Canli T. Early life stress, physiology, and genetics: a review. Front Psychol. 2019;10:1668. doi: 10.3389/fpsyg.2019.01668.
- 5. Gee DG. Caregiving influences on emotional learning and regulation: Applying a sensitive period model. Curr Opin Behav Sci. 2020 Dec;36:177-184. doi: 10.1016/j.cobeha.2020.11.003.
- 6. Tottenham N. Neural meaning making, prediction, and prefrontalsubcortical development following early adverse caregiving. Dev Psychopathol. 2020;32(5):1563-1578. doi: 10.1017/S0954579420001169.
- 7. Koss KJ, Gunnar MR. Annual research review: early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J Child Psychol Psychiatry. 2018;59(4):327-346. doi: 10.1111/jcpp.12784.
- 8. Jones-Mason K, Coccia M, Alkon A, Melanie Thomas KC, Laraia B, Adler N, et al. Parental sensitivity modifies the associations between maternal prenatal stress exposure, autonomic nervous system functioning and infant temperament in a diverse, low-income sample. Attach Hum Dev. 2023;25(5):487-523. doi: 10.1080/14616734.2023.2257669.
- 9. Beurel E, Nemeroff CB. Early life adversity, microbiome, and inflammatory responses. Biomolecules. 2024;14(7):802. doi: 10.3390/biom14070802.
- 10. Zhou GQ, Huang MJ, Yu X, Zhang NN, Tao S, Zhang M. Early life adverse exposures in irritable bowel syndrome: new insights

and opportunities. Front Pediatr. 2023;11:1241801. doi: 10.3389/fped.2023.1241801.

- 11. Sjölund J, Uusijärvi A, Tornkvist NT, Kull I, Bergström A, Alm J, et al. Prevalence and progression of recurrent abdominal pain, from early childhood to adolescence. Clin Gastroenterol Hepatol. 2021;19(5):930-938.e8. doi: 10.1016/j.cgh.2020.04.047.
- 12. Fu Y, Thomas R, Cares K. Influence of family history on children with irritable bowel syndrome. Journal of Pediatric Gastroenterology and Nutrition. 2021;72(6):866-9. doi: 10.1097/mpg.0000000000003059.
- 13. Kahhalé I, Barry KR, Hanson JL. Positive parenting moderates associations between childhood stress and corticolimbic structure. PNAS Nexus. 2023 Jun 13;2(6):pgad145. doi: 10.1093/pnasnexus/pgad145.
- 14. Xu J, Guan X, Li H, Zhang M, Xu X. The Effect of Early Life Stress on Memory is Mediated by Anterior Hippocampal Network. Neuroscience. 2020;451:137-148. doi: 10.1016/j.neuroscience.2020.10.018.
- 15. Russell JD, Heyn SA, Peverill M, DiMaio S, Herringa RJ. Traumatic and Adverse Childhood Experiences and Developmental Differences in Psychiatric Risk. JAMA Psychiatry. 2025;82(1):66-74. doi: 10.1001/jamapsychiatry.2024.3231.
- 16. Chocyk A, Majcher-Maślanka I, Dudys D, Przyborowska A, Wędzony K. Impact of early-life stress on the medial prefrontal cortex functions a search for the pathomechanisms of anxiety and mood disorders. Pharmacol Rep. 2013;65(6):1462-70. doi: 10.1016/s1734-1140(13)71506-8.

- 17. Deng S, Xie R, Kong A, Luo Y, Li J, Chen M, et al. Early-life stress contributes to depression-like behaviors in a two-hit mouse model. Behav Brain Res. 2023;452:114563. doi: 10.1016/j.bbr.2023.114563.
- 18. Lawrence S, Scofield RH. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health. 2024;41:100849. doi: 10.1016/j. bbih.2024.100849.
- 19. Juruena MF, Eror F, Cleare AJ, Young AH. The role of early life stress in HPA axis and anxiety. Adv Exp Med Biol. 2020;1191:141-153. doi: 10.1007/978-981-32-9705-0 9.
- 20. Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res. 2024;287:127858. doi: 10.1016/j.micres.2024.127858.
- 21. Zhang Z, Hu Y, Lv G, Wang J, He Y, Zhang L, et al. Functional constipation is associated with alterations in thalamo-limbic/parietal structural connectivity. Neurogastroenterol Motil. 2021;33(12):e13992. doi: 10.1111/nmo.13992.
- 22. Pohl CS, Medland JE, Mackey E, Edwards LL, Bagley KD, DeWilde MP, et al. Early weaning stress induces chronic functional diarrhea, intestinal barrier defects, and increased mast cell activity in a porcine model of early life adversity. Neurogastroenterol Motil. 2017;29(11):10.1111/nmo.13118. doi: 10.1111/nmo.13118.

Отримано/Received 01.08.2025 Рецензовано/Revised 13.09.2025 Прийнято до друку/Accepted 18.09.2025

Information about authors

- 0. Lychkovska, MD, PhD, DSc, Professor, Head of the Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine, e-mail: olychkovska@gmail.com; https://orcid.org/0000-0001-8789-6310
- M. Semen, MD, PhD, Assistant Professor of the Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine; e-mail: martasemen4@qmail.com; https://orcid.org/0000-0002-8464-7412
- I. Kulachkovska, MD, PhD, Associate Professor of the Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine; e-mail: kulachkovska.ir@gmail.com; https://orcid.org/0000-0002-6740-4347
- V. Semen, MD, Outpatient Department of the Municipal Non-Profit Enterprise of the Lviv Regional Council "Clinical Center of Pediatric Medicine", Lviv, Ukraine, e-mail: vikkisemen26@gmail.com; https://orcid.org/0000-0002-5090-2227

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Information about funding. This study was funded by the state budget and is a fragment of the planned research work of the Department of Propaedeutics of Pediatrics and Medical Genetics of Danylo Halytsky Lviv National Medical University on the topic "Identification of the peculiarities of the course of hereditary pathology and multifactorial diseases in children who have had COVID-19 under the conditions of martial law" (state registration number 0123U101701).

Authors' contribution. O.L. Lychkovska — study concept and design, manuscript writing; M.O. Semen — manuscript writing, data analysis; I.Yu. Kulachkovska — data analysis, manuscript writing; V.D. Semen — data collection and processing.

O.L. Lychkovska¹, M.O. Semen¹, I.Yu. Kulachkovska¹, V.D. Semen²

¹Danylo Halytsky Lviv National Medical University, Lviv, Ukraine

²Clinical Center of Pediatric Medicine, Lviv Regional Council, Lviv, Ukraine

Functional gastrointestinal disorders in early childhood: the importance of early intervention and a multidisciplinary approach

Abstract. Background. According to the biopsychosocial model of functional gastrointestinal disorders (FGIDs), early childhood factors play an important role, particularly infant stress influenced by parental behavior. The earliest manifestations of such stress are newborn regulatory disturbances and FGIDs in infancy. The purpose was to investigate the relationship between early manifestations of infant stress, namely regulation disorders and FGIDs in young children, and the formation of FGIDs in older children. Materials and methods. A total of 132 children with FGIDs (study group, SG) were examined, including 68 with irritable bowel syndrome (SG1) and 64 with functional dyspepsia (SG2). The control group (CG) consisted of 60 healthy children. A detailed history (family history method) of the first year of life was taken, with an assessment of early stress markers (regulatory disturbances and infant FGIDs) on a yes/no basis. Results. Children in the SG had a significantly higher prevalence of early regulatory disturbances and FGIDs compared with the CG. No significant differences were found between SG1 and SG2. Following symptoms were reported during infancy in the SG: infantile colic - in 39 cases (29.5 %), which persis-

ted beyond 3 months in 7 (5.3 %) of them; regurgitation — in 42 (31.8 %), of which in 8 (6.1 %) led to weight loss; bowel movements disturbances — in 31 (25.3 %) (mostly constipations); sleep disturbances — in 30 (22.7 %) cases; excessive excitability, prolonged crying, or hyperesthesia — in 31 (23.5 %). Combination of one to two disturbances were most common in both SG and CG, whereas 3–4 disturbances were observed in 12 children in the SG and only one in the CG. Most mothers of SG children (81; 61.4 %) described their emotional state during the child's first year of life as anxious, with persistent fatigue and a lack of confidence in their caregiving abilities. Conclusions. Infant regulatory disturbances represent a significant risk factor for FGIDs in later childhood. No associations were identified between particular types of early regulatory disturbances and specific FGIDs in older children. Early intervention, involving a multidisciplinary approach to the management of an infant with stress symptoms, may reduce or even eliminate this significant risk factor for later FGID development in older children.

Keywords: children; functional gastrointestinal disorders; stress; risk factors

Оригінальні дослідження / Original Researches

УДК 616-053.31-037

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1920

Мавропуло Т.К., Соломенко М.В. Дніпровський державний медичний університет, м. Дніпро, Україна

Прогнозування наслідків післяасфіктичних ушкоджень мозку у немовлят на тлі лікувальної гіпотермії

Резюме. Актуальність. Асфіксія при народженні є третьою найпоширенішою причиною смерті новонароджених (23%). Майже з такою ж частотою розвиваються тяжкі неврологічні порушення. Лікувальна гіпотермія (ЛГ) є ефективною та безпечною стратегією у доношених дітей, знижує ризик поєднаного результату смерті і/або значної інвалідності у віці 18 місяців. Однак у понад 40 % немовлят з гіпоксично-ішемічною енцефалопатією (ГІЕ) середнього та тяжкого ступеня розвиваються довгострокові несприятливі наслідки. Сучасні наукові дослідження насамперед присвячені питанням визначення прогнозу ураження мозку при проведенні лікувальної гіпотермії. Для прогнозування наслідків гіпоксично-ішемічної енцефалопатії використовують комбінації показників, наприклад комбіновану шкалу мультиорганної дисфункції (MODE Score). Також зберігається орієнтація на окремі показники, але спектр їх постійно розширюється. Оцінка терморегуляції відображає тяжкість ушкодження мозку і ϵ перспективним прогностичним маркером. Вищу температуру дитини під час проведення ЛГ пов'язують з несприятливими наслідками для нейророзвитку у 18-місячному віці. Метою нашого дослідження була перевірка гіпотези про те, що немовлята з тяжкими несприятливими наслідками гіпоксично-ішемічної енцефалопатії демонструють порушення терморегуляції (коливання аксилярної температури після закінчення ЛГ) до 10-денного віку. **Матеріали та методи.** Робота виконана на базі неонатального центру та центру катамнестичного спостереження КП «Регіональний медичний центр родинного здоров'я» Дніпровської обласної ради. Дизайн дослідження був визначений як ретроспективне одноцентрове клінічне дослідження. У дослідження були включені 19 дітей, які досягли другого року життя і яким проводилась ЛГ у післяасфіктичному періоді протягом 2023-2024 років (використовувалась системна гіпотермія з апаратними засобами охолодження). Інформація щодо неонатального періоду була отримана на підставі аналізу медичної документації. Оцінка ступеня постасфіктичної поліорганної дисфункції проводилася за шкалою МОДЕ, яка включала характеристику стану неврологічної, серцево-судинної, дихальної, шлунково-кишкової, ниркової системи, гематологічні показники, оцінку нейровізуалізації та електроенцефалографії. Моніторинг температури під час проведення ${\it \Pi} \Gamma$ здійснювався за допомогою ректального датчика, після закінчення ${\it \Pi} \Gamma$ до 10-ї доби життя проводився контроль аксилярної температури (вимірювання кожні 2 години). Результати. Серед обстежених 19 дітей (10 хлопчиків та 9 дівчаток) тяжкі несприятливі наслідки гіпоксично-ішемічної енцефалопатії мали 5 (26,3 %) дітей. Діти з тяжкими несприятливими наслідками гіпоксично-ішемічної енцефалопатії вірогідно (p < 0,05) відрізнялись від групи без тяжких наслідків за частотою заходів розширеної первинної реанімації (потреба в медикаментозних препаратах під час первинної реанімації — 80,0 проти 21,4%), проявами поліорганної дисфункції, відображенням якої ϵ оцінка за шкалою MODE (8 (6-9) балів проти 2(1-3)), а також наявністю проявів температурної нестабільності після періоду Л Γ (наявність епізодів підвищення аксилярної температури у дитини до 10 діб життя — 100,0 проти 21,4 %). Наявність епізодів підвищення температури у дитини до 10 діб життя мала вірогідні (р < 0,05) кореляції з такими параметрами, як потреба у розширеній первинній реанімації $(r_s = 0,671)$; ступінь постасфіктичної поліорганної дисфункції за шкалою MODE $(r_s = 0,673)$; наявність судом $(r_s = 0,610)$, патологічних змін м'язового тонусу $(r_s = 0,585)$ чи

Для кореспонденції: Мавропуло Тетяна Карлівна, доктор медичних наук, професор, завідувач кафедри педіатрії 3 та неонатології, Дніпровський державний медичний університет, вул. Володимира Вернадського, 9, м. Дніпро, 49044, Україна; е-mail: mavropulotk@ukr.net; тел.: +380 (50) 321-42-08

For correspondence: Tetiana Mavropulo, MD, DSc, PhD, Professor, Head of the Department of Pediatrics 3 and Neonatology, Dnipro State Medical University, Volodymyr Vernadsky st., 9, Dnipro, 49044, Ukraine; e-mail: mavropulotk@ukr.net; phone: +380 (50) 321-42-08

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

відсутність перорального харчування ($r_s=0,507$) на момент виписки; наявність деструктивних змін мозкової тканини ($r_s=0,701$). Прояви інфекції, які дебютували до 10 діб життя, реєстрували у 1 (7,1%) дитини в групі без несприятливих наслідків і у 2 (40,0%) дітей з групи з несприятливими наслідками (p=0,155). Прояви температурної дизрегуляції передбачали тяжкі довгострокові наслідки (аналіз ROC-кривої) з доброю діагностичною точністю (AUC=0,893) на відміну від шкали MODE, яка демонструвала відмінну діагностичну точність (AUC=0,993). Обидва показники мали 100% чутливість при своїх оптимальних порогах, але специфічність для прогнозування у шкали MODE була кращою (0,786 проти 0,929). Висновки. Ми отримали результати, які підтверджують гіпотезу, що немовлята з тяжкими несприятливими наслідками Γ IE після проведення Γ IГ демонструватимуть порушення терморегуляції (підвищення температури при продовженні моніторингу шкірної температури після закінчення Γ IГ) до 10-денного віку. Обидва показники оцінки (шкала Γ IE прояви температурної дизрегуляції) мали 100% чутливість щодо прогнозування тяжких несприятливих наслідків Γ IE, але специфічність для прогнозування у шкали Γ IE вісля провести, що Γ IE вісля прогнозування у шкали Γ IE весприятливими наслідками Γ IE.

Ключові слова: асфіксія; лікувальна гіпотермія; гіпоксично-ішемічна енцефалопатія; поліорганна дисфункція; наслідки; температура тіла; новонароджені; немовлята

Вступ

Тяжка асфіксія при народженні та гіпоксично-ішемічна енцефалопатія (ГІЕ) — основні причини госпіталізації доношених дітей до відділень інтенсивної терапії новонароджених. Щороку у світі 2,4 мільйона немовлят помирають у перший місяць життя, причому 1 мільйон внаслідок асфіксії при народженні. До 60 % дітей з ГІЕ помирають або страждають від значних порушень здоров'я у віці до 2 років. Ці показники зростають у країнах з низьким та середнім рівнем доходу, де відбувається 90 % смертей. Хоча неонатальна медицина досягла значного прогресу за останні десятиліття, висока частота неврологічних дефіцитів у дітей після перинатальних уражень все ще зберігається [1—3].

Лікувальна гіпотермія (ЛГ) — стандартне лікування новонароджених з помірним та тяжким ступенем ГІЕ. Нейропротекторний механізм є багатофакторним. Лікувальна гіпотермія знижує потреби головного мозку в метаболічній енергії, зменшує запальне, оксидативне та ексайтотоксичне ушкодження, апоптотичну загибель клітин. Лікувальна гіпотермія є ефективною та безпечною стратегією у доношених дітей, знижує ризик поєднаного результату смерті або значної інвалідності у віці 18 місяців. Однак у понад 40 % немовлят з ГІЕ середнього та тяжкого ступеня розвиваються несприятливі наслідки (смерть, ДЦП, епілепсія та когнітивні або зорові порушення) [4].

Публікації про ЛГ у новонароджених вперше з'явилися в 1986 році. Протягом перших 20 років дослідження в цій галузі перебували на початковій стадії, з менш ніж п'ятьма публікаціями на рік. Однак з 2007 року кількість публікацій зростає з року в рік, і кількість цитувань на рік також швидко зростає. Іншими словами, все більше дослідників зосереджуються на проблемах ЛГ у новонароджених [5]. У 1999–2003 рр. терміни «легка гіпотермія», «індукована гіпотермія» та «зупинка серця» мали найдовший час сплесків цитування, кожний з яких перевищував 10 років. Термін «помірна гіпотермія» найчастіше використовувався з 2010 по 2014 рік, терміни «неонатальна енцефалопатія», «нейропротекторна терапія» — з 2014 по 2019 рік. З 2019 по 2025 рік найчастіше цитуються терміни «фактори ризику», «прогноз», «катамнестичне спостереження дітей» [5].

Отже, результати сучасних досліджень аргументують необхідність вивчення як короткострокових, так і довгострокових результатів ГІЕ у немовлят. Поліпшення знань про ранні фактори ризику поганого прогнозу може допомогти виявити новонароджених, яким були б корисні тривале спостереження, додаткове нейропротекторне втручання та ранні методи реабілітації.

Короткострокові несприятливі наслідки ГІЕ визначаюся протягом неонатального періоду або протягом періоду перебування в неонатальному відділенні. Короткострокові несприятливі наслідки, які визначаються протягом першого тижня життя (деструктивні зміни мозкової тканини за даними магнітно-резонансної томографії (МРТ) чи ультразвукового дослідження, відсутність нормалізації даних електроенцефалографічного дослідження (ЕЕГ), збереження клінічних ознак тяжкої ГІЕ протягом 72 годин), як правило, визначають групу найвищого ризику необоротних постішемічних ушкоджень або смерті й можуть означати необхідність перенаправлення медичної допомоги й орієнтацію на паліативне лікування [6, 7]. Згідно з публікацією D.F.L. Gubler et al. (2025), більшість смертей (95,7 %) після тяжкої асфіксії сталася в медіані 3,5 (2— 6) дня життя [8]. Клінічні прояви гіпоксично-ішемічної енцефалопатії в цей час модифіковані проведенням лікувальної гіпотермії і не можуть вірогідно визначати прогноз [9, 10].

Короткострокові несприятливі наслідки, які відзначаються пізніше (клінічні та електроенцефалографічні судоми протягом неонатального періоду, аномальні результати неврологічного обстеження та відсутність перорального харчування при виписці з відділення інтенсивної терапії) [6, 7], визначають групу високого ризику необоротних ушкоджень мозку й вимагають індивідуалізації ведення [6, 7]. Відкладення вирішення цього питання до моменту виписки обмежує можливість наших терапевтичних втручань.

Наше уявлення про фактори ризику несприятливого прогнозу змінюється. Зберігається орієнтація на окремі показники, спектр яких постійно розширюється. Перинатальна ацидемія, високий рівень лактату [11], низька оцінка за шкалою Апгар, тяжкі ранні неврологічні результати та ранні судоми, висока глікемія, температурна дизрегуляція під час проведення

ЛГ, рання/персистуюча патологічна аЕЕГ, специфічні МРТ-ознаки, біомаркери (нейронспецифічна енолаза) нині активно досліджуються як показники ризику несприятливого розвитку [11–13]. Використовуються також комбінації показників (клінічний стан + рання/персистуюча патологічна ЕЕГ/аЕЕГ + характерні МРТ-зміни таламуса/базальних гангліїв) або комбіновані шкали (МОDE Score), що мають високу специфічність/чутливість щодо тяжких наслідків ушкоджень мозку [14–17].

У новонароджених з тяжкою та помірно-тяжкою ГІЕ спостерігається порушення терморегуляції [18]. Дослідження показують, що постасфіктичне ушкодження викликає підвищення температури мозку і тіла дитини, у свою чергу, підвищена температура викликає ушкодження головного мозку, і саме підвищена температура тіла є маркером тяжкості цього ушкодження. Вища температура тіла дитини пов'язана з несприятливими наслідками для нейророзвитку у 18-місячному віці. Незалежно від того, чи є цей зв'язок причиннонаслідковим, рекомендації Програми реанімації новонароджених наголошують на тому, що клініцисти повинні ретельно уникати та/або знижувати підвищену температуру в рамках стабілізації стану [13].

У дослідженні U. Mietzsch et al. (2023) було доведено, що «температура матраца» для проведення апаратної ЛГ (температура води на виході з охолоджувального пристрою) прогнозує ушкодження мозку. Температура матраца у новонароджених, які померли або вижили з нейроповедінковими порушеннями, була стабільно на 1,5-3,0 °C вищою протягом проведення ЛГ порівняно з дітьми без таких порушень [19]. Згідно з даними K. Tsuda et al. (2022), вища температура тіла під час фази охолодження та вища частота серцевих скорочень до та під час охолодження були пов'язані з несприятливими наслідками [20]. Водночає були опубліковані й інші результати. Переохолодження під час активного охолодження та нестабільність температури після зігрівання (56 % немовлят страждали від гіпотермії, 1 % від гіпертермії) були пов'язані з гіршими наслідками. Здатність підтримувати нормотермію після зігрівання була пов'язана з кращим нейророзвитковим результатом (RR = 0.718, 95% ДІ 0.531-0.970, P = 0.031) [21].

Сучасні інструментальні дослідження показали, що лікувальна гіпотермія, яка застосовувалася відповідно до сучасних рекомендацій, знижувала температуру мозку новонароджених з гіпоксично-ішемічною енцефалопатією протягом перших днів життя, але не запобігла ранньому підвищенню температури мозку у новонароджених, у яких розвинулося деструктивне ушкодження головного мозку, незважаючи на це лікування. Температура мозку, виміряна за допомогою магнітно-резонансної спектроскопії, як правило, залишалася вищою приблизно до 10-го дня життя (у базальних гангліях та у білій речовині) і приблизно до місячного віку (у базальних гангліях) у новонароджених, у яких розвинулося деструктивне ушкодження мозку, порівняно з тими, у кого цього ушкодження не було [19]. Таким чином, оцінка терморегуляції є перспективною як маркер прогнозування наслідків ГІЕ [18].

Мета: перевірка гіпотези про те, що немовлята з тяжкими несприятливими наслідками гіпоксично- ішемічної енцефалопатії демонструють порушення терморегуляції (коливання аксилярної температури після закінчення $\Pi\Gamma$) до 10-денного віку.

Матеріали та методи

Робота виконана на базі неонатального центру та центру катамнестичного спостереження КП «Регіональний медичний центр родинного здоров'я» Дніпровської обласної ради. Дослідження проводилося в рамках НДР кафедри педіатрії 3 та неонатології «Підходи до діагностики та лікування хвороб дитячого віку з позиції безпеки пацієнта», номер держреєстрації — 0121U114304. Дослідження схвалене комісією з етики Дніпровського державного медичного університету.

Дизайн дослідження був визначений як ретроспективне одноцентрове клінічне дослідження. У нього були включені 19 дітей, які знаходились під спостереженням до другого року життя і яким проводилась ЛГ у постасфіктичному періоді протягом 2023—2024 років (системна гіпотермія з використанням апаратних засобів охолодження). Критеріями включення були проведення ЛГ після народження відповідно до показань (гестаційний вік ≥ 35 тижнів; ознаки перинатальної депресії (оцінка за шкалою Апгар < 6 на 10-й хвилині життя або проведення первинної реанімації протягом не менше 10 хвилин); помірна або тяжка гіпоксичноішемічна енцефалопатія (за даними модифікованої шкали Sarnat), наявна у віці 1-6 годин). Критеріями виключення були гестаційний вік менше ніж 35 тижнів, діагностовані вроджені вади розвитку, генетичні дефекти, прогресуюча вентрикуломегалія обструктивного характеру, перенесені нейроінфекції, гемолітична хвороба новонародженого.

Інформація щодо неонатального періоду була отримана на підставі аналізу медичної документації. Протягом перебування дітей у відділенні інтенсивної терапії проводився контроль температури тіла. Моніторинг температури під час проведення ЛГ здійснювався за допомогою ректального датчика, після закінчення ЛГ до 10-ї доби життя проводився контроль аксилярної температури (вимірювання не рідше ніж кожні 2 години). Після закінчення процедури ЛГ враховувались відхилення температури від нормальних показників (36,5-37,5 °C) як в сторону підвищення, так і в сторону зниження. Оцінка ступеня постасфіктичної поліорганної дисфункції проводилася за шкалою МОDE, яка включала характеристику стану неврологічної, серцево-судинної, дихальної, шлунково-кишкової, ниркової системи, гематологічні показники, оцінку нейровізуалізації та електроенцефалографії. Інтерпретація сумарного бала була такою: 0-2 бали — мінімальна або відсутня мультисистемна дисфункція, 3-6 балів — помірна дисфункція, 7–10 балів — виражена дисфункція, > 10 балів (11-15) — тяжка мультисистемна дисфункція [17].

Критеріями короткотермінового несприятливого прогнозу ГІЕ вважалися смерть дитини, ознаки деструктивних гіпоксично-ішемічних уражень ЦНС,

судом та патологічного м'язового тонусу, відсутність повноцінного перорального харчування (на момент виписки з неонатального стаціонару) [6, 7].

Усі діти в подальшому спостерігались педіатром та дитячим неврологом. Неврологічний розвиток оцінювався за допомогою шкали Ages & Stages Questionnaires® (https://www.broomfieldpediatrics.com/ages-stages-questionnaires/). Усім дітям проводилося повторне нейросонографічне обстеження для підтвердження або виключення деструктивних постішемічних уражень мозку. Новонародженим з короткотерміновим несприятливим прогнозом ГІЕ проводилася МРТ головного мозку.

Критерієм довгострокових тяжких несприятливих наслідків ГІЕ вважались смерть дитини, наявність деструктивних ішемічних уражень мозку, дитячого церебрального паралічу.

Отримані дані були подані у вигляді медіани та міжквартильного діапазону для безперервних змінних, кількості та відсотка від загальної кількості для категоріальних змінних. Статистична обробка результатів проводилась з використанням методів оцінки ефекту при альтернативній формі результату реакції (точний критерій Фішера, двосторонній), оцінки відмінностей між двома незалежними вибірками за рівнем будь-якої ознаки, виміряної кількісно, між малими вибірками (критерій Манна — Уїтні). Здатність передбачати короткострокові результати оцінювали за допомогою ROC-аналізу (receiver operating characteristic). Для всіх видів аналізу критичне значення рівня значущості (р) приймалося < 0,05.

Результати

Серед обстежених 19 дітей (10 хлопчиків та 9 дівчаток) тяжкі несприятливі наслідки ГІЕ мали 5 (26,3 %) дітей. Одна (5,3 %) дитина померла у віці 8 діб життя з ознаками внутрішньомозкового крововиливу. У 4 (21,1 %) дітей до 1 року були діагностовані ознаки атрофічно-деструктивних змін мозку (підтверджені на МРТ) та дитячого церебрального паралічу. Серед цих 4 дітей до місячного віку у 2 (10,5 %) були виявлені ознаки дифузних ішемічних змін мозку та мультикістозної лейкомаляції, в 1 (5,3 %) дитини діагностоване ішемічне ураження базальних гангліїв, ще в 1 (5,3 %) дитини виявлялись лише ознаки субатрофічних змін мозкової тканини (розширення зовнішніх та внутрішніх лікворних просторів).

Оцінка за шкалою МОDE в загальній групі спостереження була такою: 9 (47,4 %) дітей — мінімальна або відсутня мультисистемна дисфункція, 7 (36,8 %) дітей — помірна дисфункція, 2 (10,6 %) дитини — виражена мультисистемна дисфункція, 1 (5,3 %) дитина — тяжка мультисистемна дисфункція. Серед дітей з тяжкими несприятливими наслідками розподіл за шкалою МОDE був таким: 2 (10,6 %) дитини — помірна дисфункція, 2 (10,6 %) дитини — виражена мультисистемна дисфункція, 1 (5,3 %) дитина — тяжка мультисистемна дисфункція.

Характеристика дітей, які підлягали проведенню лікувальної гіпотермії, залежно від наслідків ГІЕ наведена в табл. 1.

Діти з тяжкими несприятливими наслідками ГІЕ вірогідно (р < 0,05) відрізнялись частотою заходів розширеної первинної реанімації, проявами поліорганної дисфункції, відображенням якої є оцінка за шкалою MODE, а також наявністю проявів температурної нестабільності після періоду ЛГ.

Наявність епізодів підвищення температури у дитини до 10 діб життя мала вірогідні (р < 0,05) кореляції з такими параметрами, як потреба в розширеній первинній реанімації ($\mathbf{r}_s = 0,671$), ступінь постасфіктичної поліорганної дисфункції за шкалою МОDE ($\mathbf{r}_s = 0,673$), наявність судом ($\mathbf{r}_s = 0,610$), патологічних змін м'язового тонусу ($\mathbf{r}_s = 0,585$) чи відсутність перорального харчування ($\mathbf{r}_s = 0,507$) на момент виписки, наявність деструктивних змін мозкової тканини ($\mathbf{r}_s = 0,701$).

Здатність шкали МОDE та проявів температурної дизрегуляції передбачати довгострокові результати оцінювали за допомогою аналізу ROC-кривої (receiver operating characteristic). Шкала МОDE демонструвала відмінну діагностичну точність (AUC = 0,993), температурна дизрегуляція — добру діагностичну точність (AUC = 0,893). Результати ROC-аналізу наведені в табл. 2.

Обидва показники мали 100% чутливість при своїх оптимальних порогах, але специфічність для прогнозування у шкали МОDE була кращою. Шкала МОDE була більш точною для скринінгового прогнозування (мінімум хибнонегативних результатів). Але при невеликій вибірці не було гарантії, що на нових пацієнтах модель збереже 100% чутливість. Широкі довірчі інтервали, особливо для специфічності, означають, що результат варто вважати оптимістичним, але це потребує підтвердження на більшій або незалежній вибірці.

Комбінована модель (шкала MODE + прояви температурної дизрегуляції) демострує потенційно найвищу точність, але для клінічного підтвердження теж слід провести валідацію на більшій когорті пацієнтів або використати статистичну перевірку.

Використання перехресної перевірки (кросвалідації) показало, що модель демонструє 100% точність при кожному розподілі даних, що підтверджує її абсолютну прогностичну здатність на наявній вибірці. Але це також може означати, що предиктори чітко розділяють класи (тобто діти зі сприятливим та несприятливим прогнозами мають зовсім різні значення вихідних параметрів) або ж вибірка занадто мала або однорідна, тому модель не стикається з реальними «пограничними» випадками. Використання статистичної моделі «імітації незалежної вибірки» (моделювання, яке може змінити AUC при появі «шуму» (label noise, помилки вихідних даних) або нових даних) показало, що додавання «шуму» помітно не шкодить до 0,5 о, але при 1σ AUC знижується до 0.93 ± 0.06 . «Шум» за предиктором шкали MODE не зменшує AUC у межах $0{-}2\sigma$ (модель інваріантна завдяки стадартизації). Шум у мітках (неправильні або неточні «етикетки» істинного стану) — найкритичніший фактор: якщо наслідки ГІЕ будуть помилково позначені у 30 % пацієнтів, АUC зменшиться до $\approx 0.69 \pm 0.09$. Отже, перевірка гіпотези потребує зовнішньої валідації на незалежній когорті.

Таблиця 1. Характеристика дітей, які підлягали проведенню лікувальної гіпотермії, залежно від наслідків ГІЕ

	Групи спос	тереження	
Показники	Діти без тяжких несприятливих наслідків ГІЕ (n = 14)	Діти з тяжкими несприятливими наслідками ГІЕ (n = 5)	
Гестаційний вік при народженні в тижнях, медіана (квартилі)	40,0 (39,0–40,0)	40,0 (39,0–40,0)	
Маса при народженні в грамах, медіана (квартилі)	3575 (3140–3920)	3900 (3,400–4500)	
Оцінка за шкалою Апгар через 1 хвилину, медіана (квартилі)	2 (2–2)	1 (1–2,5)	
Оцінка за шкалою Апгар через 5 хвилин, медіана (квартилі)	3 (3–5)	3 (2–4,5)	
Хлопчики, n (%)	8 (57,1)	3 (60,0)	
Дівчатка, п (%)	6 (42,9)	2 (40,0)	
Інтубація в пологовому залі, n (%)#	6 (42,9)	5 (100)	
Потреба в компресіях серця під час первинної реанімації, n (%)#	6 (42,9)	5 (100)	
Потреба в медикаментозних препаратах під час первинної реанімації, п (%)#	3 (21,4)	4 (80,0)	
Потреба в проведенні первинної реанімації більше ніж 10 хв, n (%)	9 (64,3)	5 (100)	
Потреба в штучній вентиляції легень (ШВЛ), n (%)	14 (100)	5 (100)	
Тривалість ШВЛ у днях, медіана (квартилі)*	6 (5–8)	20 (17–25)	
Потреба в гемодинамічній підтримці, п (%)#	5 (35,7)	5 (100)	
Тривалість інотропної підтримки у днях, медіана (квартилі)*	0 (0–4)	7 (7–17)	
Тривалість олігоанурії у днях, медіана (квартилі; min–max)*	0 (0–1)	3 (3–4)	
Підвищення рівня креатиніну у днях, медіана (квартилі)*	0 (0–0)	1 (0–5)	
Тривалість порушення функції печінки у днях, медіана (квартилі)	0 (0–0,5)	1 (0–1)	
Тривалість геморагічного синдрому у днях, медіана (квартилі)	0 (0–0)	1 (0–1)	
Тривалість тромбоцитопенії у днях, медіана (квартилі)	0 (0–0,5)	1 (0–20)	
Судоми, клінічні та/або електроенцефалографічні, n (%)#	1 (7,14)	4 (80,0)	
Тривалість судомного синдрому у днях, медіана (квартилі)*	0 (0–0)	20 (0–35)	
Початок ентерального харчування у днях, медіана (квартилі)	4 (3–8)	8,5 (4–12)	
Початок перорального харчування у днях, медіана (квартилі; min–max)	15 (8–20)	18,5 (8,5–27,5)	
Відсутність перорального харчування на момент виписки, n (%)#	0	3 (60,0)	
Відновлення рефлекторної активності (дні)	8,0 (6–15)	10 (0–25)	
Тривалість порушення м'язового тонусу (дні)*	0 (0–5)	27,5 (10–53,5)	
Тривалість перебування у відділенні інтенсивної терапії новонароджених дітей, що вижили, у днях, медіана (квартилі)*	10 (9–25)	28,5 (23,5–30)	
Прояви інфекції, які дебютували до 10 діб життя, n (%)	1 (7,1)	2 (40,0)	
Оцінка за шкалою MODE, медіана (квартилі)*	2 (1–3)	8 (6–9)	
Наявність епізодів підвищення температури у дитини до 10 діб життя, n (%)#	3 (21,4)	5 (100,0)	

Примітки: * — вірогідність відмінностей (р < 0,05) згідно з підрахунком критерію Манна — Уїтні; * — вірогідність відмінностей (р < 0,05) згідно з підрахунком точного критерію Фішера.

Показник	AUC (p < 0,05)	Оптимальний поріг	Чутливість (95% CI Sp)	Специфічність (95% CI Sp)			
Шкала MODE	0,992	5,0	1,0 (1,0–1,0)	0,929 (0,75–1,0)			
Прояви температурної дизрегуляції	0,893	1,0	1,0 (1,0–1,0)	0,786 (0,62–1,0)			
Шкала MODE + прояви температурної дизрегуляції	0,998	5,6	1,0 (0,0–1,0)	1,0 (0,25–1,0)			

Таблиця 2. Результати ROC-аналізу

Якщо в базі даних діагнози пацієнтів та наслідки патології будуть визначені без помилок, тоді навіть якщо в самих вимірюваннях (наприклад, температура шкіри, оцінка шкали МОDE) є невеликі похибки або коливання, модель повинна все одно працювати стабільно.

Обговорення

Незважаючи на значний розвиток різних діагностичних методів, оцінка ступеня післяасфіктичного ушкодження мозку та визначення прогнозу (насамперед короткотермінового) у новонароджених з ГІЕ, які лікуються за допомогою ЛГ, все ще залишається проблемою, оскільки всі діагностичні інструменти мають певні обмеження. Використання шкал клінічної оцінки дозволяє об'єктивувати оцінку та порівнювати результати між різними пацієнтами. Шкала Апгар та шкала Sarnat в основному використовуються для оцінки стану новонародженого при народженні та є одними з основних критеріїв для визначення потреби у проведенні ЛГ. Вони також корисні як прогностичні інструменти, хоча результати досліджень є неоднозначними [22, 23].

Використання мультимодальних шкал, які дають кількісну оцінку поліорганної дисфункції та враховують додаткові маркери (нейровізуалізація, ЕЕГ), надає можливість більш правильного прогнозування наслідків ГІЕ. Згідно з публікаціями, бал за шкалою МОDE мав високу прогностичну силу щодо смерті новонароджених в післяасфіктичному періоді (AUC 0,96, p=0,002). Немовлята, у яких спостерігалися в подальшому патологічні неврологічні наслідки, мали значно вищі бали за шкалою МОDE (p=0,001) [17].

Подібні результати були отримані в нашому дослідженні, а саме вірогідні відмінності (р < 0,05) шкали МОDE між групами дітей з тяжкими наслідками ГІЕ та без них, висока прогностична значущість щодо несприятливих наслідків (AUC 0,99, p < 0,05).

Оскільки ушкодження мозку спричиняє дисфункцію центру терморегуляції, метод оцінки ступеня ушкодження мозку та прогнозу, заснований на оцінці терморегуляції, також викликає інтерес [23]. Ми обрали групу дітей для дослідження, які перебували на апаратному охолодженні, оскільки пасивне охолодження або активне охолодження без сервокерованого пристрою пов'язані з ризиками перевищення температури та її швидких коливань, причому немовлята з тяжкою ГІЕ мають найбільший ризик [24—26].

На тлі ГІЕ новонароджені мають порушену терморегуляцію внаслідок поєднання змін центральних (гіпоталамічних) і периферичних механізмів регуля-

ції, метаболізму та мультиорганних дисфункцій [23]. Підвищена температура у новонароджених з ГІЕ була пов'язана з вищим ризиком смерті або інвалідності порівняно з неохолодженими немовлятами без підвищеної температури (з урахуванням стадії енцефалопатії). У дослідженні NICHD NRN доведений зв'язок між підвищеною температурою та смертю або IQ < 70 [27]. Температура мозку, виміряна за допомогою магнітнорезонансної спектроскопії, була вищою в охолоджених немовлят з деструктивними післяішемічними ушкодженнями головного мозку порівняно з охолодженими немовлятами без таких ушкоджень [28]. Отже, оцінка терморегуляції є перспективною як фізіологічний біомаркер для прогнозування результату, що відображає тяжкість травми [18].

Відомо, що температура тіла та мозку корелює у здорових осіб, але між ними існує дисоціація при ушкодженні головного мозку [28]. Ми отримали результати, які підтверджують гіпотезу, що немовлята з несприятливими наслідками ГІЕ демонструватимуть порушення терморегуляції після проведення терапевтичної гіпотермії. Ці порушення (підвищення температури) можуть бути зареєстрованими при продовженні моніторингу шкірної температури після закінчення ЛГ.

Ознаки інфекції протягом перших 10 днів життя виявлялись у 2 дітей. Літературні дані щодо комбінованого впливу неонатальної інфекції та сепсису у новонароджених, які отримували ЛГ, є суперечливими. Але незважаючи на те, яким є механізм підвищення температури (чи це наслідок післягіпоксичного ушкодження мозку, чи це прояв інфекції), це не має значення для прогнозування наслідків ГІЕ. Адже інфекція не тільки посилює ушкодження мозку при ГІЕ, але й може послаблювати терапевтичний ефект охолодження [24].

Наше дослідження має обмеження, обумовлені невеликою кількістю випадків, отже, висновки теж можуть бути дещо упередженими. Ми не відзначали проявів зниження температури тіла, можливо, це було обумовлено саме невеликою кількістю пацієнтів. Іншим обмеженням дослідження може бути той факт, що персонал міг ретельніше фіксувати випадки зміни температури тіла у найтяжчих пацієнтів. Отже, необхідне розширення досліджень на більшій когорті пацієнтів.

Висновки

Ми отримали результати, які підтверджують гіпотезу, що немовлята з несприятливими наслідками ГІЕ демонструватимуть порушення терморегуляції (підвищення аксилярної температури) після проведення ЛГ до 10-денного віку. Обидва показники (шкала МОDE

і прояви температурної дизрегуляції) мають 100% чутливість щодо прогнозування тяжких несприятливих наслідків ГІЕ при оптимальних порогах, але специфічність для прогнозування у шкали МОDE краща. Необхідні подальші дослідження (зі збільшенням кількості пацієнтів з тяжкою та помірною ГІЕ), щоб з'ясувати, наскільки тісно епізоди зміни температури після ЛГ пов'язані з несприятливими наслідками ГІЕ.

Конфлікт інтересів. Автори заявляють про відсутність будь-яких конфліктів інтересів і власних фінансових інтересів, які можуть бути витлумачені як вплив на результати або тлумачення рукопису.

Інформація про фінансування. Дослідження не має окремого додаткового фінансування. Робота виконана в рамках ініціативної науково-дослідної роботи кафедри педіатрії 3 та неонатології Дніпровського державного медичного університету «Підходи до діагностики та лікування захворювань дитячого віку з позицій безпеки пацієнта».

Інформація про внесок кожного автора. Т.К. Мавропуло — концепція та дизайн дослідження, збір та обробка матеріалів, аналіз отриманих даних; М.В. Соломенко — збір й обробка матеріалів, аналіз отриманих даних, написання тексту.

Список літератури

- 1. Sutin J, Vyas R, Feldman HA, Ferradal S, Hsiao CH, Zampolli L, et al. Association of cerebral metabolic rate following therapeutic hypothermia with 18-month neurodevelopmental outcomes after neonatal hypoxic ischemic encephalopathy. EBioMedicine. 2023 Aug;94:104673. doi: 10.1016/j.ebiom.2023.104673. Epub 2023 Jun 29. PMID: 37392599; PMCID: PMC10338207.
- 2. Hawkins CC, Spiegel E, Allen DD, Nesbit K. The impact of therapeutic hypothermia on developmental outcomes in lower-middle income countries: A systematic review and meta-analysis with a health equity lens. Pediatr Neonatol. 2025 Apr 19:S1875-9572(25)00083-X. doi: 10.1016/j. pedneo.2024.09.010. Epub ahead of print. PMID: 40287349.
- 3. Marques KL, Rodrigues V, Balduci CTN, Montes GC, Barradas PC, Cunha-Rodrigues MC. Emerging therapeutic strategies in hypoxic-ischemic encephalopathy: a focus on cognitive outcomes. Front Pharmacol. 2024 Feb 26;15:1347529. doi: 10.3389/fphar.2024.1347529. PMID: 38469401; PMCID: PMC10925695.
- 4. Ovcjak A, Pontello R, Miller SP, Sun HS, Feng ZP. Hypothermia combined with neuroprotective adjuvants shortens the duration of hospitalization in infants with hypoxic ischemic encephalopathy: Meta-analysis. Front Pharmacol. 2023 Jan 6;13:1037131. doi: 10.3389/fphar.2022.1037131. PMID: 36686686; PMCID: PMC9853207.
- 5. Zhou T, Liang P, Dai N, Ma M, Lin J, Zhu J, Ren G. Therapeutic hypothermia for neonates: a bibliometric analysis and visualization research. Front Neurol. 2025 May 7;16:1565749. doi: 10.3389/fneur.2025.1565749. PMID: 40401026; PMCID: PMC12092385.
- 6. Aoki Y, Kono T, Enokizono M, Okazaki K. Short-term outcomes in infants with mild neonatal encephalopathy: a retrospective, observational study. BMC Pediatr. 2021 May 7;21(1):224. doi: 10.1186/s12887-021-02688-y. PMID: 33962618; PMCID: PMC8103637.
- 7. Murray DM, Bala P, O'Connor CM, Ryan CA, Connolly S, Boylan GB. The predictive value of early neurological examination in neonatal hypoxic-ischaemic encephalopathy and neurodevelopmental outcome at 24 months. Dev Med Child Neurol. 2010 Feb;52(2):e55-9.

- doi: 10.1111/j.1469-8749.2009.03550.x. Epub 2009 Dec 23. PMID: 20041933.
- 8. Gubler DFL, Wenger A, Boos V, Liamlahi R, Hagmann C, Brotschi B, Grass B. Redirection of Care for Neonates with Hypoxic-Ischemic Encephalopathy Receiving Therapeutic Hypothermia. J Clin Med. 2025 Jan 7;14(2):317. doi: 10.3390/jcm14020317. PMID: 39860326; PMCID: PMC11765625.
- 9. Shankaran S, Laptook AR, Tyson JE, Ehrenkranz RA, Bann CM, Das A, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Evolution of encephalopathy during whole body hypothermia for neonatal hypoxicischemic encephalopathy. J Pediatr. 2012 Apr;160(4):567-572.e3. doi: 10.1016/j.jpeds.2011.09.018. Epub 2011 Nov 1. PMID: 22050871; PMCID: PMC3299861.
- 10. Mietzsch U, Kolnik SE, Wood TR, Natarajan N, Gonzalez FF, Glass H, et al.; HEAL Trial Study Group. Evolution of the Sarnat exam and association with 2-year outcomes in infants with moderate or severe hypoxic-ischaemic encephalopathy: a secondary analysis of the HEAL Trial. Arch Dis Child Fetal Neonatal Ed. 2024 Apr 18;109(3):308-316. doi: 10.1136/archdischild-2023-326102. PMID: 38071538; PMCID: PMC11031347.
- 11. DuPont TL, Chalak LF, Morriss MC, Burchfield PJ, Christie L, Sánchez PJ. Short-term outcomes of newborns with perinatal acidemia who are not eligible for systemic hypothermia therapy. J Pediatr. 2013 Jan;162(1):35-41. doi: 10.1016/j.jpeds.2012.06.042. Epub 2012 Aug 4. PMID: 22871488; PMCID: PMC3712522.
- 12. Debillon T, Bednarek N, Ego A; LyTONEPAL Writing Group. LyTONEPAL: long term outcome of neonatal hypoxic encephalopathy in the era of neuroprotective treatment with hypothermia: a French population-based cohort. BMC Pediatr. 2018 Aug 1;18(1):255. doi: 10.1186/s12887-018-1232-6. PMID: 30068301; PMCID: PMC6090887.
- 13. Bonifacio SL, Chalak LF, Van Meurs KP, Laptook AR, Shankaran S. Neuroprotection for hypoxic-ischemic encephalopathy: Contributions from the neonatal research network. Semin Perinatol. 2022 Nov;46(7):151639. doi: 10.1016/j.semperi.2022.151639. Epub 2022 Jun 10. PMID: 35835616; PMCID: PMC11500562.
- 14. El Shahed AI, Branson HM, Chacko A, Terumalay S, Zheng X, Pang EW, et al. Predictive model of neurodevelopmental outcome in neonatal hypoxic ischemic encephalopathy. Early Hum Dev. 2025 Feb;201:106189. doi: 10.1016/j.earlhumdev.2024.106189. Epub 2025 Jan 2. PMID: 39787883.
- 15. Bonifacio SL, Hutson S. The Term Newborn: Evaluation for Hypoxic-Ischemic Encephalopathy. Clin Perinatol. 2021 Aug;48(3):681-695. doi: 10.1016/j.clp.2021.05.014. PMID: 34353587.
- 16. Troha Gergeli A, Škofljanec A, Neubauer D, Paro Panjan D, Kodrič J, Osredkar D. Prognostic Value of Various Diagnostic Methods for Long-Term Outcome of Newborns After Hypoxic-Ischemic Encephalopathy Treated With Hypothermia. Front Pediatr. 2022 Apr 7;10:856615. doi: 10.3389/fped.2022.856615. Erratum in: Front Pediatr. 2023 Jun 22;11:1226835. doi: 10.3389/fped.2023.1226835. PMID: 35463898; PMCID: PMC9021608.
- 17. Sweetman DU, Strickland T, Isweisi E, Kelly L, Slevin MT, Donoghue V, et al. Multi-organ dysfunction scoring in neonatal encephalopathy (MODE Score) and neurodevelopmental outcomes. Acta Paediatr. 2022 Jan;111(1):93-98. doi: 10.1111/apa.16111. Epub 2021 Sep 22. PMID: 34528287.
- 18. Enweronu-Laryea C, Martinello KA, Rose M, Manu S, Tann CJ, Meek J, et al. Core temperature after birth in babies with neonatal encephalopathy in a sub-Saharan African hospital setting. J Physiol. 2019 Aug;597(15):4013-4024. doi: 10.1113/JP277820. Epub 2019 Jun 5. PMID: 31168907; PMCID: PMC6767688.

- 19. Mietzsch U, Flibotte JJ, Law JB, Puia-Dumitrescu M, Juul SE, Wood TR. Temperature dysregulation during therapeutic hypothermia predicts long-term outcome in neonates with HIE. J Cereb Blood Flow Metab. 2023 Jul;43(7):1180-1193. doi: 10.1177/0271678X231162174. Epub 2023 Mar 8. PMID: 36883364; PMCID: PMC10291460.
- 20. Tsuda K, Shibasaki J, Isayama T, Takeuchi A, Mukai T, Ioroi T, et al.; Baby Cooling Registry of Japan. Body temperature, heart rate and long-term outcome of cooled infants: an observational study. Pediatr Res. 2022 Mar;91(4):921-928. doi: 10.1038/s41390-021-01502-w. Epub 2021 Apr 12. PMID: 33846554.
- 21. Lee-Kelland R, Chakkarapani E, Jarry S, Liu X, Smolicz I, Scull-Brown E, Thoresen M. Overcooling During Therapeutic Hypothermia and Temperature Instability after Rewarming are associated with a Poorer Neurodevelopmental Outcome. Presented at the Neonatal Society 2015 Spring. March 19, 2015. https://www.neonatalsociety.ac.uk/2015/03/19/overcooling-during-therapeutic-hypothermia-and-temperature-instability-after-rewarming-are-associated-with-a-poorer-neurodevelopmental-outcome/.
- 22. World Health Organization. http://www.childmortality.org/. Global Health Observatory (GHO); WHO 2016. Accessed April 10, 2020.
- 23. Walas W, Wilińska M, Bekiesińska-Figatowska M, Halaba Z, Śmigiel R. Methods for assessing the severity of perinatal asphyxia and early prognostic tools in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Adv Clin Exp Med. 2020 Aug; 29(8):1011-1016. doi: 10.17219/acem/124437. PMID: 32820870.

- 24. Natarajan G, Laptook A, Shankaran S. Therapeutic Hypothermia: How Can We Optimize This Therapy to Further Improve Outcomes? Clin Perinatol. 2018 Jun;45(2):241-255. doi: 10.1016/j.clp.2018.01.010. Epub 2018 Feb 23. PMID: 29747886; PMCID: PMC5953210.
- 25. Соколова К.Ю. Час початку лікувальної гіпотермії та перебіг гіпоксично-ішемічної енцефалопатії у доношених новонароджених. Здоров'я дитини. 2020;15(1):36-41. http://nbuv.gov.ua/UJRN/Zd 2020 15 1 9.
- 26. Руідігер М., Бабінцева А., Годованець Ю. Лікувальна гіпотермія новонароджених: рекомендації Universitätsklinikum Carl Gustav Carus (м. Дрезден, Німеччина). Неонатологія, хірургія та перинатальна медицина. 2023;13(1(47):53-59. https://doi. org/10.24061/2413-4260.XIII.1.47.2023.8.
- 27. Laptook AR, McDonald SA, Shankaran S, et al. Elevated temperature and 6- to 7-year outcome of neonatal encephalopathy. Ann Neurol. 2013;73(4):520–8. doi: 10.1002/ana.23843.
- 28. Owji ZP, Gilbert G, Saint-Martin C, Wintermark P. Brain Temperature Is Increased During the First Days of Life in Asphyxiated Newborns: Developing Brain Injury Despite Hypothermia Treatment. AJNR Am J Neuroradiol. 2017 Nov;38(11):2180-2186. doi: 10.3174/ajnr.A5350. Epub 2017 Aug 31. PMID: 28860214; PMCID: PMC7963566.

Отримано/Received 28.08.2025 Рецензовано/Revised 13.10.2025 Прийнято до друку/Accepted 20.10.2025

Information about authors

Tetiana Mavropulo, MD, DSc, PhD, Professor, Head of the Department of Pediatrics 3 and Neonatology, Dnipro State Medical University, Dnipro, Ukraine; e-mail: mavropulotk@ukr.net; phone: +380 (50) 321-42-08; http://orcid.org/0000-0001-9351-3080

Mykhailo Solomenko, Pediatrician, Assistant Professor at the Department of Obstetrics, Gynecology, and Pediatrics, European Medical University; e-mail: michaell18maria18@gmail.com; http://orcid.org/0009-0006-2417-38

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Funding Information. This research did not receive any specific external funding. The work was carried out as part of the initiative scientific research of the Department of Pediatrics 3 and Neonatology at Dnipropetrovsk State Medical University titled "Approaches to the Diagnosis and Treatment of Childhood Diseases from the Perspective of Patient Safety".

Authors' contribution. T.K. Mavropulo — concept and design of the study, collection and processing of materials, analysis of the obtained data; M.V. Solomenko — collection and processing of materials, analysis of the obtained data, writing the text.

T.K. Mavropulo, M.V. Solomenko Dnipro State Medical University, Dnipro, Ukraine

Prediction of the outcomes of post-asphyxial brain injury in infants undergoing therapeutic hypothermia

Abstract. Background. Birth asphyxia remains the third leading cause of neonatal mortality (23 %) and is associated with a nearly equivalent incidence of severe neurological impairment. Therapeutic hypothermia (TH) is an effective and safe treatment strategy for term infants, reducing the combined risk of death or major disability at 18 months of age. However, more than 40 % of infants with moderate-to-severe hypoxic-ischemic encephalopathy (HIE) still develop long-term adverse outcomes. Modern scientific publications are primarily focused on the issues of predicting brain damage in the context of therapeutic hypothermia. Predicting the outcomes of HIE at the present stage is based on combinations of clinical and laboratory parameters, such as the combined Multiorgan Dysfunction Evaluation (MODE) score. Nonetheless, individual indicators remain important, and their spectrum continues to expand. Thermoregulation assessment has emerged as a promising marker for outcome prediction, as it reflects the extent of brain injury. Higher body temperature in infants during TH has been associated with adverse neurodevelopmental outcomes at 18 months of age. Therefore, the purpose

of our study was to test the hypothesis that infants with severe adverse outcomes of HIE exhibit impaired thermoregulation manifested by fluctuations in axillary temperature after the completion of TH — within the first 10 days of life. Materials and methods. The study was conducted at the Neonatal Center and the Follow-up Observation Center of the Regional Medical Center for Family Health at the Dnipro Regional Council. The research design was defined as a retrospective, single-center clinical study. The study cohort included 19 children who had received device-controlled systemic TH as part of their neonatal management for post-asphyxial encephalopathy during 2023-2024 and had reached two years of age. Data concerning the neonatal period were obtained through the analysis of medical records. The degree of post-asphyxial multiorgan dysfunction was assessed using the MODE score, which encompassed evaluation of the neurological, cardiovascular, respiratory, gastrointestinal, and renal systems, as well as hematologic parameters, neuroimaging findings, and electroencephalographic characteristics. During TH, body temperature was monitored continuously via a rectal sensor; after hypothermia, axillary temperature was assessed up to the 10th day of life, with measurements performed every two hours. Results. Among the 19 infants examined (10 males and 9 females), 5 children (26.3 %) demonstrated severe adverse outcomes of HIE. They significantly differed (p ≤ 0.05) from those without such outcomes in several key parameters. The frequency of advanced resuscitation measures, specifically the need for pharmacologic interventions during initial resuscitation, was markedly higher (80.0 vs. 21.4 %). These infants also exhibited more pronounced multiorgan dysfunction, as reflected by higher MODE scores: 8 (6-9) vs. 2 (1-3), and showed a greater incidence of temperature instability following TH, with episodes of axillary temperature elevation within the first 10 days of life observed in all affected infants (100.0 vs. 21.4 %). The occurrence of temperature elevation episodes during the first 10 days of life demonstrated significant correlations (p \leq 0.05) with several clinical parameters such as the need for advanced resuscitation ($r_s = 0.671$), the degree of post-asphyxial multiorgan dysfunction according to the MODE score ($r_a = 0.673$), presence of seizures ($r_a = 0.610$), pathological muscle tone abnormalities ($r_s = 0.585$) or absence of oral feeding at discharge ($r_s = 0.507$), and destructive changes in brain tissue on neuroimaging ($r_s = 0.701$). Signs of infection emerging within the first 10 days of life were identified in 1 infant (7.1 %) in the group without adverse outcomes and in 2 infants (40.0 %) in the group with adverse outcomes (p = 0.155). Thermoregulatory disorders predicted severe long-term outcomes with good diagnostic accuracy according to the ROC curve analysis (AUC = 0.893), whereas the MODE score demonstrated excellent diagnostic accuracy (AUC = 0.993). Both indicators achieved 100 % sensitivity at their optimal thresholds; however, specificity was higher for the MODE score (0.929 vs. 0.786). Conclusions. Our findings support the hypothesis that infants with severe adverse outcomes of HIE following TH exhibit impaired thermoregulation - manifested as elevated skin temperature during continued post-hypothermia temperature monitoring — within the first 10 days of life. Both evaluated parameters, the MODE score and manifestations of thermoregulatory disorders, demonstrated 100 % sensitivity for predicting severe adverse outcomes of HIE. However, the MODE score showed superior specificity for prognostic purposes. Further studies are needed to investigate whether episodes of temperature change after TH are associated with adverse outcomes of HIE. **Keywords:** asphyxia; therapeutic hypothermia; hypoxic-ische-

Reywords: asphyxia; therapeutic hypothermia; hypoxic-ischemic encephalopathy; multiorgan dysfunction; outcomes; body temperature; neonates; infants

Оригінальні дослідження / Original Researches

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1921

Illona Okvita Wiyogo¹, IGB Adria Hariastawa^{1, 2}, Munawaroh Fitriah^{1, 2}, Fendy Matulatan^{1, 2}
¹Universitas Airlangga, Surabaya, East Java, Indonesia
²Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

The blood serum acetylcholinesterase levels preand post-resection in patients with Hirschsprung's disease

Abstract. Background. Hirschsprung's disease is one of the most common neonatal obstruction diseases. The annual cases of Hirschsprung's disease in Indonesia are approximately 1,400 live births. Its screening and diagnosis can be established using several methods, but they have various limitations; therefore, alternative methods are required. Patients with Hirschsprung's disease tend to have higher acetylcholinesterase (AchE) levels, and it is potentially applied as an alternative diagnostic examination for this condition. The aim was to further determine AchE levels in patients with Hirschsprung's disease. Materials and methods. This prospective cohort study was conducted in Dr. Soetomo Regional General Hospital, Surabaya, from November 2024 to January 2025. The demographic, surgery, and preand post-resection AchE levels data were collected. The Human AChE (Acetylcholinesterase) ELISA Kit (Elabscience E-EL-H6031) was used to assess the AchE levels. The collected data were analysed using the chi-Square test, the pre- and post-resection AchE levels were analysed using a paired t-test. A p-value < 0.05 was considered statistically significant. Results. The study included 6 participants. Most of them were male (83.3 %) with a mean age of 34.830 ± 34.143 months. The analysis revealed a significant difference in AchE levels pre- and post-resection (299.875 and 85.267 units/mL, p-value of 0.014) with a very strong relationship (Cohen's d effect size 1.250). Conclusions. Acetylcholinesterase levels will decrease after surgery. Evaluation of AchE content may be potentially used as a diagnostic and prognostic examination for Hirschsprung's disease.

Keywords: acetylcholinesterase; Hirschsprung's disease; pull-through; surgery

Introduction

Hirschsprung's disease, or congenital megacolon, is a disease characterized by the absence of ganglion cells in myenteric (Auerbach) and submucosal (Meissner) plexuses in the bowels. It is the most common gastrointestinal obstructive disease in neonates occurring in 1 of 4,000 live births [1, 16]. Most cases (75 %) involve the transitional area, rectosigmoid, but it can also occur in all regions, from the colon to the terminal ileum (8 % cases). Furthermore, 80-90 % Hirschsprung's disease diagnosis was established in neonates, while infants, toddlers, and children rarely present with any symptoms. A previous study revealed that most of Hirschsprung's disease cases were found in preterm (< 37 weeks) and low birth weight (< 2,500 grams) infants; therefore, it has a significant impact on children's quality of life [17]. Recently, there has been no clear epidemiology data regarding Hirschsprung's disease in Indonesia, but it is estimated that there are 1,400 live births with Hirschsprung's

disease annually. There are 20–40 cases of Hirschsprung disease in the Cipto Mangunkusumo Hospital (RSCM) annually [11]. However, a study in Hasanuddin University Hospital revealed that there were 109 cases of Hirschsprung's disease from 2013 to 2017 [17].

Suspected cases of Hirschsprung's disease must follow the evaluation or screening procedures, such as contrast enema (CE) and anorectal manometry (ARM), followed by rectal suction biopsy (RSB). If the RSB results are not clear, full-thickness biopsy (FTB) is recommended. These methods have limitations. The CE has a risk of radiation exposure and is inaccurate for various conditions, such as in the bowel transitional zone. The expert operators are required to use the ARM method, but uncooperative conditions may require sedation agents. The RSB method is invasive and is highly affected by the quality of the biopsy specimen and its storage. The common additional work-ups for Hirschsprung's disease have several limitations, they are

For correspondence: Illona Okvita Wiyogo, Division of Pediatric Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia; e-mail: illonawi@gmail.com Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

invasive and may cause discomfort, particularly in children. Therefore, alternative methods that are cheap, easy, and not invasive are required for Hirschsprung's disease [1, 18]. Acetylcholinesterase is an enzyme that catalyses the hydrolysis of acetylcholine (Ach), the most common neurotransmitter in the body, and is commonly used as a biomarker for Hirschsprung's disease and cholinergic activity biomarker. This hydrolysis process is required to avoid excessive stimulation from cholinergic neurons; therefore, neurons can return to their resting states [4].

Various studies demonstrated the local (bowel segment) and systemic (serum) increase of serum AchE levels [15, 19, 20]. A recent study in Indonesia by Wasito et al. showed a significant increase of AchE serum levels in patients with Hirschsprung's disease compared to healthy populations and its potency as an alternative diagnostic examination for this condition with sensitivity of 8.3 % and specificity of 70.6 % [19]. The association between aganglionic bowel segment in Hirschsprung's disease with AchE levels and expressions (local and systemic) was also revealed in various studies [10, 16]. The definitive management is an aganglionic colon segment removal that will decrease the systemic AchE levels theoretically, and it has been demonstrated in various previous studies.

The purpose was to further determine AchE systemic levels after definitive surgery was conducted.

Materials and methods

This prospective cohort study was conducted on patients with Hirschsprung's disease in Dr. Soetomo General Regional Hospital, Surabaya. The inclusion criteria: 1) confirmed diagnosis of Hirschsprung's disease through histopathologic examination and definitive surgery in November 2024 — January 2025; 2) children's parents agreed to participate in this study and signed informed consent; 3) age of patients was more than 3 months and less than 10 years. The exclusion criteria: 1) the parents did not agree to participate in this study; 2) patients with other neuromuscular disorders; and 3) loss to follow-up during the study.

A brief explanation about the study was given after sampling, and parents signed informed consent voluntarily. The demographic data were also collected in this study. The pre- and post-resection AchE levels were determined

using the Human AChE (Acetylcholinesterase) ELISA Kit (Elabscience E-EL-H6031). The Duhamel surgeries were conducted using the pull-through technique. The collected data were analysed using the Statistical Package for Social Sciences software version 26.0. The descriptive analysis was conducted to obtain demographic data in this study. The nominal variables were further analysed using the chi-square test, while the numeric data of pre- and post-surgery AchE levels — with a paired t-test.

Results

There were 10 patients with Hirschsprung's disease in Dr. Soetomo Regional General Hospital, Surabaya, from November 2024 to January 2025. Four patients were excluded from this study because post-surgical sampling was not conducted. The analysis only included 6 patients. Most of the participants were boys (83.3 %) and underwent Duhamel surgery (66.6 %). The mean body weight was 11.517 ± 6.751 kg. The mean age and aganglionic bowel segment length were 34.830 ± 34.143 months and 19.250 ± 5.439 cm, respectively. The mean difference of pre- and post-resection AchE levels was 214.622 ± 171.601 units/mL (Table 1).

The mean pre-surgery AchE level was 299.875 units/mL, with minimum and maximum of 135.4 and 526.1 units/mL, respectively. Meanwhile, the post-resection AchE levels was 85.267 units/mL with minimum and maximum of 8.1 and 213.5 units/mL, respectively. The data analysis revealed that there was a statistically significant difference in AchE pre- and post-resection (p = 0.014 (< 0.05)). The significance of the difference in AchE levels pre- and post-surgery was determined using Cohen's d effect size and made up 1.250, which indicated a very significant difference (Table 2).

Discussion

This study was dominated by boys (83.3 %). It is in accordance with previous studies showing that Hirschsprung's disease was 3–4 times more common in boys than girls [8]. The mean body weight in this study was 11.517 kg. It was higher than in the previous study (5.4 \pm 1.6 kg). This difference may be due to age factor because the age of participants in the previous study was less than 3 months, while

Table 1. The demographic data					
Characteristic	Min-max	Mean ± SD			
Body weight (kg)	6–23	11.517 ± 6.751			
Age (months)	7–84	34.830 ± 34.143			
Aganglionic segment length (cm)	12–25	19.250 ± 5.439			
AchE levels difference (unit/mL)	32.48–517.96	214.622 ± 171.601			
Characteristics	Frequencies (n = 6)				
Sexes: — boys; — girls	5 (83.3 %) 1 (16.7 %)				
Surgeries: — Duhamel; — TAEPT	4 (66.6 %) 2 (33.4 %)				

rable 21 The companion of Activities, and, in					
AchE levels	Min-max	Mean ± SD (95% CI)	p-value	Cohen's d effect size	
Pre-surgery	135.4–526.1	299.875 ± 164.070	0.014	1.250	
Post-resection	8.1–213.5	85.267 ± 81.467	0.014	1.250	

Table 2. The comparison of AchE levels, unit/ml

in this study, it was 7–84 months [6]. Body weight is collected in this study because it is one of the risk factors of Hirschsprung's-associated enterocolitis (HAEC), a complication after surgery [9].

The mean age of participants in this study was 34.83 months, which is lower than in the previous study (50.33 months). But it is in accordance with the literature, which stated that most Hirschsprung's disease cases occur between 1 month and 5 years [17]. Furthermore, an epidemiology study about Hirschsprung's disease revealed that the median age of participants was 24 months [14]. The false positive of AchE levels was most common in patients less than 3 months old. Acetylcholinesterase is a very important substance in early life to increase cell adhesion and neurogenesis in the enteric nervous system development. Therefore, high AchE levels are common in early life. It is the reason why blood AchE levels examination in Hirschsprung's disease must be conducted thoroughly and consider the patients' age. The age distribution in this study revealed that there was no significant difference regarding AchE levels.

The length of the aganglionic segment affects Hirschsprung's disease. The longer aganglionic segment correlates with the rapid onset of clinical manifestations. One of the possible causes is that Hirschsprung's disease is a congenital disorder, and the age at diagnosis is not a factor that correlates with the pathophysiology of Hirschsprung's disease [19]. This study also found that the mean aganglionic augment length was 19.25 cm. It is important to pay close attention to the length of the aganglionic bowel segment because short aganglionic segments produce lower serum AchE than the longer ones. Therefore, Hirschsprung's disease patients with short aganglionic segments had small or insignificant increases in serum AchE levels [19]. A long aganglionic bowel segment (> 30 cm) is one of the risk factors for enterocolitis after surgery. Longer bowel segment requires a wider resection, decreasing sigmoid indentation, affecting defecation control mechanism, and increasing the risk of defecation complications after surgery [9].

The mean pre-surgery AchE level in this study was 299.875 ± 164.070 units/mL that is higher than in the previous study (95.89 ± 51.11 units/mL) [19]. It may be due to the difference in sample size, and the studies about blood AchE levels in Hirschsprung disease are still lacking.

The mean post-resection AchE levels in this study was 85.267 ± 81.467 units/mL. There has been no study about post-surgery AchE levels recently. The absence of ganglion cells in the affected colon leads to increased Ach levels and increased expression of AchE in the nerve plexus and blood. The blood AchE levels increase due to excessive AchE direct release from the aganglionic bowel segment. The AchE levels may be affected by systemic factors, one of which is the length of the aganglionic bowel segment [3]. Theoretically, AchE concentration in the colon area increases due to the

presence of the aganglionic segment; therefore, when this segment is resected, the AchE levels will decrease. The principle of Hirschsprung's disease management is to resect the aganglionic part or segment and pull-through the ganglionic proximal bowel segment [14].

Clinical evaluation is required after aganglionic segment resection, which results in clinical improvement. The clinical status of participants improved significantly with a significant decrease in AchE levels. The statistical test result demonstrated the significant difference in AchE levels preand post-surgery, with a p-value of 0.014. It can be concluded that surgery was able to decrease the AchE levels. Cohen's d effect size analysis was conducted for further study, and Cohen's coefficient in this study was 1.250. It means that aganglionic segment resection surgery had a huge impact on AchE levels.

This finding is in accordance with our hypothesis that the serum AchE levels will decrease after resection because of an increase in AchE transcriptional gene activity that leads to increased Ach and AchE synthesis in Hirschsprung's disease. The increased AchE levels due to AchE transcriptional gene occur directly and are not a response to Ach increase [15]. The amount of tissue with signaling tract dysfunction will decrease after aganglionic bowel segment resection; therefore, the excessive local or systemic Ach secretion will decrease. Furthermore, aganglionic bowel segment resection decreases the AchE gene activity that leads to decreased AchE secretion.

The gold standard examination of Hirschsprung's disease diagnosis is full-thickness biopsy, but it is considered a high-risk procedure because it requires invasive surgery to get representative specimens [13]. The AchE level examination may be an alternative for its diagnosis. Previous studies have determined the sensitivity and specificity of AchE levels examination as an additional work-up of Hirschsprung's disease. Chalkkon et al. demonstrated that blood AchE levels had a sensitivity of 83.3 and 70.6 %, respectively. The sensitivity showed the percentage of Hirschsprung's disease patients with high serum AchE levels, while its specificity demonstrated the percentage of healthy patients with low AchE levels [19]. Based on the above-mentioned findings, it can be concluded that serum AchE levels have a promising prospect as an alternative diagnostic method for Hirschsprung's disease.

The significant difference of pre- and post-resection AchE levels in positive patients means that AchE evaluation supports the diagnosis of Hirschsprung's disease and may be a diagnostic tool for it. Serum AchE level examination is considered a cheap, easy, and non-invasive method for Hirschsprung's disease diagnosis.

One of the post-resection complications in patients with Hirschsprung's disease is HAEC. Age is one of the risk factors for HAEC. A study found that Hirschsprung's disease diagnosis in a one-week-old baby has a higher incidence of HAEC and a higher risk of more severe clinical manifestations. However, other studies stated that there was no association between age at Hirschsprung's disease diagnosis and the development of HAEC before or after surgery. Erykman et al. also revealed that severe HAEC leads to thymus involution, spleen lymphopenia, and B lymphopoiesis suppression; therefore, early diagnosis is required [6]. The reported incidence of HAEC was around 27.8 % [5].

The HAEC pathogenesis is not well understood, but it may be related to the complex interaction between the dysfunctional enteric innervation, mucin production abnormality, selective immunoglobulin deficiency, gastrointestinal microflora imbalance, bacterial translocation, and partial mechanical obstruction. Huang et al. demonstrated 28.73 % of enterocolitis cases in Hirschsprung's disease patients who had undergone surgery. Long aganglionic bowel segment (> 30 cm) is one of the post-surgical enterocolitis risk factors (p = 0.017). Long aganglionic bowel segment is associated with the severity of proximal obstruction, with the potency of increased intraluminal pressure that may lead to increased bacterial stasis and intestinal dysmotility [12]. Patients with long aganglionic bowel segments have a significantly higher incidence of HAEC compared to those with shorter ones [5]. The presence of the aganglionic bowel segment is the cause of increased AchE levels. Based on the several findings of the above-mentioned studies, high postresection AchE levels correlated with higher risks of HAEC. This study demonstrated that AchE has the potency to be applied as a valuable examination for Hirschsprung's disease, but this study was a single-centre, small (6 samples); therefore, further studies with a bigger sample size in several places are required to increase the generalizability of these findings.

Conclusions

Patients with Hirschsprung's disease who had undergone aganglionic bowel segment resection had lower AchE serum levels compared to pre-surgery. The AchE levels may be potentially used as a diagnostic and prognostic tool for Hirschsprung's disease examination. Further studies are required on the clinical applications of AchE levels in Hirschsprung's disease in order to have more accurate findings.

References

- 1. Ambartsumyan L, Smith C, Kapur RP. Diagnosis of Hirschsprung Disease. Pediatr Dev Pathol. 2020;23:8-22. doi: 10.1177/1093526619892351.
- 2. Anderson JE, Vanover MA, Saadai P, Stark RA, Stephenson JT, Hirose S. Epidemiology of Hirschsprung disease in California from 1995 to 2013. Pediatr Surg Int. 2018;34:1299-1303. doi: 10.1007/s00383-018-4363-9.
- Chalkoo M, Rashid A, Kakroo S, Razvi S, Wani A, Wani M. Role of erythrocyte acetylcholinesterase in the diagnosis of Hirschsprung's disease. JPMS. 2013;3:79-82.
- 4. Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315-335. doi: 10.2174/1570159x 11311030006.

- 5. Dong Q, Li G, Dong J. Identification of risk factors for post-operative recurrent Hirschsprung associated enterocolitis. J Pediatr Surg. 2018;S0022-3468(18)30477-9.
- 6. Freedman-Weiss MR, Chiu AS, Caty MG, Solomon DG. Delay in operation for Hirschsprung disease is associated with decreased length of stay: a 5-year NSQIP-Peds analysis. J Perinatol. 2019;39:1105-1110. doi: 10.1038/s41372-019-0405-y.
- 7. Frykman PK, Short SS. Hirschsprung-associated enterocolitis: prevention and therapy. Semin Pediatr Surg. 2012;21:328-335. doi: 10.1053/j.sempedsurg.2012.07.007.
- 8. Granéli C, Dahlin E, Börjesson A, Arnbjörnsson E, Stenström P. Diagnosis, symptoms, and outcomes of Hirschsprung's disease from the perspective of gender. Surg Res Pract. 2017;2017:1-8. doi: 10.1155/2017/9274940.
- 9. Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, et al. Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA. 2007;104:13603-13608. doi: 10.1073/pnas.0702756104.
- 10. Ikawa H, Yokoyama J, Morikawa Y, Hayashi A, Katsumata K. A quantitative study of acetylcholine in Hirschsprung's disease. J Pediatr Surg. 1980;15:48-52. doi: 10.1016/s0022-3468(80)80402-7.
- 11. Kemenkes. Pedoman Nasional Pelayanan Kedokteran Tata Laksana Penyakit Hirschsprung. 2017.
- 12. Le-Nguyen A, Righini-Grunder F, Piché N, Faure C, Aspirot A. Factors influencing the incidence of Hirschsprung associated enterocolitis (HAEC). J Pediatr Surg. 2019;54:959-963. doi: 10.1016/j.jpedsurg.2019.01.026.
- 13. Kuvelkar N, DSouza S, Vidhyashree K, Shankar G, Bukel MF, et al. Estimation of plasma and RBC acetylcholinesterase in children: an evaluation tool for Hirschsprung's disease? Indian J Pathol Microbiol. 2021;64:266-276. doi: 10.4103/ijpm.ijpm 567 19.
- 14. Mabula JB, Kayange NM, Manyama M, Chandika AB, Rambau PF, Chalya PL. Hirschsprung's disease in children: a five-year experience at a university teaching hospital in northwestern Tanzania. BMC Res Notes. 2014;7:410. doi: 10.1186/1756-0500-7-410.
- 15. Moore SW, Johnson G. Acetylcholinesterase in Hirschsprung's disease. Pediatr Surg Int. 2005;21:255-263. doi: 10.1007/s00383-005-1383-z.
- 16. Okasora T, Okamoto E, Kuwata K, Toyosaka A, Ohashi S, Ueki S. Serum and erythrocyte acetylcholine esterase in Hirschsprung's disease. Eur J Pediatr Surg. 1983;38:298-300. doi: 10.1055/s-2008-1059992.
- 17. Palissei AS, Ahmadwirawan A, Faruk M. Hirschsprung's disease: epidemiology, diagnosis, and treatment in a retrospective hospital-based study. J Med Sci. 2021;53(2):127-134. doi: 10.19106/jmedsci005302202103.
- 18. Rodriguez L, Sood M, Di Lorenzo C, Saps M. An ANMS-NASPGHAN consensus document on anorectal and colonic manometry in children. Neurogastroenterol Motil. 2017;29. doi: 10.1111/nmo.12944.
- 19. Wasito DC, Ali I, Kusumowidagdo F, Hariastawa IGBA. The serum acetylcholinesterase (AChE) levels as an alternative diagnostic tool in pre-operative Hirschsprung's disease. Bali Med J. 2022;11:1543-1547. doi: 10.15562/bmj.v11i3.3610.
- 20. Yoshimaru K, Yanagi Y, Obata S, Takahashi Y, Irie K, et al. Acetylcholinesterase staining for the pathological diagnosis of Hirschsprung's disease. Surg Today. 2021;51:181-186. doi: 10.1007/s00595-020-02055-x.

Received 11.08.2025 Revised 20.09.2025 Accepted 12.10.2025

Information about authors

Illona Okvita Wiyogo, Division of Pediatric Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia; e-mail: illonawi@gmail.com
IGB Adria Hariastawa, Division of Pediatric Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
Munawaroh Fitriah, Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
Fendy Matulatan, Division of Pediatric Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Illona Okvita Wiyogo¹, IGB Adria Hariastawa^{1,2}, Munawaroh Fitriah^{1,2}, Fendy Matulatan^{1,2}
¹Universitas Airlangga, Surabaya, East Java, Indonesia
²Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

Рівень ацетилхолінестерази в сироватці крові до та після резекції в пацієнтів із хворобою Гіршпрунга

Резюме. Актуальність. Хвороба Гіршпрунга є однією з найпоширеніших причин неонатальної кишкової непрохідності. В Індонезії щорічно реєструється приблизно 1400 випадків цієї патології. Для скринінгу й діагностики застосовуються різні методи, але вони мають певні обмеження, тому потрібні альтернативні підходи. Пацієнти з хворобою Гіршпрунга зазвичай мають вищі рівні ацетилхолінестерази (АХЕ), що може бути використано як потенційний діагностичний маркер. Мета: визначити рівні АХЕ в пацієнтів із хворобою Гіршпрунга до та після хірургічного втручання. Матеріали та методи. Це проспективне когортне дослідження було проведено в Регіональній лікарні загального профілю імені Dr. Soetomo (Сурабая, Індонезія) з листопада 2024 року до січня 2025 року. Збирали дані щодо демографічних характеристик, хірургічного втручання та рівнів АХЕ до і після резекції. Для оцінки вмісту АХЕ використано набір для імуноферментного аналізу (Elabscience E-EL-H6031). Отримані дані проаналізовано за допомогою критерію хі-квадрат, а рівні АХЕ до та після резекції — парного t-тесту. Значення р < 0,05 вважали статистично значущим. **Результати.** У цьому дослідженні взяли участь 6 пацієнтів. Більшість із них були хлопчиками (83,3 %) із середнім віком $34,830 \pm 34,143$ місяця. Аналіз виявив значну різницю в рівнях АХЕ до та після резекції (299,875 і 85,267 од/мл, р = 0,014) із дуже сильним зв'язком (розмір d-ефекту Коена 1,250). **Висновки.** Рівень ацетилхолінестерази знижується після хірургічного втручання. Уміст АХЕ може бути потенційно використаний як діагностичний і прогностичний маркер при хворобі Гіршпрунга.

Ключові слова: ацетилхолінестераза; хвороба Гіршпрунга; операція зведення; хірургічне втручання

Оригінальні дослідження / Original Researches

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1922

I Ketut Alit Utamayasa, Prima Hari Nastiti, Mahrus A. Rahman Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

Association between tricuspid regurgitant pressure and heart failure severity in children with acyanotic congenital heart disease receiving sildenafil therapy

Abstract. Background. Acyanotic congenital heart defects (ACHD) often lead to right ventricular volume overload and elevated pulmonary pressures, contributing to pediatric heart failure. Tricuspid regurgitant pressure (TRP) estimated by echocardiography serves as a non-invasive marker of pulmonary hypertension and right-sided heart stress. Sildenafil, a phosphodiesterase-5 inhibitor, is commonly used to lower pulmonary vascular resistance in children with congenital heart disease. The purpose was to evaluate the correlation between echocardiographic TRP and the severity of pediatric heart failure, as measured by the Modified Ross Score, in children with ACHD receiving sildenafil therapy. **Materials and methods.** A cross-sectional observational study was conducted in 45 children with ACHD and clinical signs of heart failure at Dr. Soetomo General Hospital between January and May 2025. TRP was assessed via Doppler echocardiography, and heart failure severity was quantified using the Modified Ross Score. Data were analyzed using Pearson correlation and multiple linear regression. **Results.** TRP showed a moderate positive correlation with the Modified Ross Score (r = 0.401, p = 0.006). TRP > 38 mmHg was predictive of more severe heart failure and malnutrition. Sildenafil therapy was used for > 3 months in 66.7 % of patients. A regression model indicated TRP as an independent predictor of heart failure severity ($\beta = 0.030$, $\rho = 0.007$), while body weight had no significant effect. **Conclusions.** Elevated TRP correlates with increased heart failure severity in children with ACHD on sildenafil therapy. Echocardiographic TRP may serve as a useful non-invasive marker for monitoring disease progression and therapeutic response.

Keywords: pediatric heart failure; Modified Ross Score; congenital heart disease

Introduction

Acyanotic congenital heart defects (ACHD) are prevalent congenital anomalies in pediatric populations, characterized by abnormal blood flow without cyanosis [1–3]. These conditions affect over 4 million children under five worldwide, with the greatest burden in South Asia and Southern Latin America between 1990 and 2021 [4, 5]. CHD often result in increased volume or excessive pressure in the right heart chambers, potentially leading to pulmonary hypertension and subsequent right ventricular failure [6, 7]. Tricuspid regurgitant pressure (TRP) is a non-invasive surrogate metric for measuring right ventricular systolic pressure and pulmonary artery pressure, which provides important information about the hemodynamic condition of affected infants [8, 9].

Pediatric heart failure is a leading cause of mortality in children with heart disease, particularly in those with severe heart failure, with a mortality risk of 50–65 % [10]. It remains a significant complication in children with ACHD, impacting their growth, activity levels, and overall quality of life [11–13]. The Modified Ross Score (MRS) is widely utilized to assess the severity of heart failure in pediatric patients, integrating clinical signs and symptoms into a standardized scoring system [14, 15]. Sildenafil, a phosphodiesterase-5 inhibitor, has emerged as a promising therapy for managing pulmonary hypertension and right-sided heart failure in children with congenital heart disease. By promoting pulmonary vasodilation, sildenafil can potentially improve hemodynamic parameters and clinical outcomes [16]. Sildenafil was also considered safe, well tolerated, and asso-

For correspondence: I Ketut Alit Utamayasa, Pediatric Cardiologist Consultant, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; e-mail: ketut.alit.utamayasa@fk.unair.ac.id

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

ciated with clinical improvement, particularly in pulmonary hypertension related to CHD [17–19].

This study aims to explore the relationship between TRP and the severity of heart failure, as measured by the Modified Ross Score, in pediatric patients with ACHD. Furthermore, it investigates the impact of sildenafil therapy on such parameters, providing insights into its role in managing these children and optimizing their cardiovascular health.

Materials and methods Study design

A consecutive sampling cross-sectional study was conducted at Dr. Soetomo General Hospital, Surabaya, between January and May 2025.

Participants

This study included 45 children aged less than 18 years with acyanotic congenital heart disease confirmed through echocardiography. Eligible participants exhibited clinical signs of heart failure, with MRS of 3 or higher. Exclusion criteria were cyanotic CHD, pulmonary hypertension unresponsive to therapy, history of renal failure, musculoskeletal injury, sepsis, lung infection, human immunodeficiency virus infection, pulmonary stenosis, and the lack of parental consent. Patients were considered for sildenafil therapy if they presented with signs of moderate heart failure (MRS \geq 4), echocardiographic evidence of elevated TRP (> 36 mmHg), and no contraindications to phosphodiesterase inhibitors. The decision was made collaboratively by the cardiology teams. Written informed consent was obtained from parents before recruitment.

Ethical issues

The study was approved by the Institutional Ethics Committee of Dr. Soetomo Hospital under approval number 3551/105/3/III/2025. Written informed consent was obtained from the parents or legal guardians of all participating children.

Measurements and data collection

All patients underwent transthoracic echocardiography using a standard protocol on Vivid E95. The echocardiograms were performed by experienced pediatrician cardiologist blinded to the clinical data. The tricuspid regurgitant jet velocity was measured to estimate the peak pressure gradient across the tricuspid valve. The subjects routinely received sildenafil at a dose of 0.5-1 mg/kg three times daily along with standard heart failure treatment. Demographic details such as age, sex, and specific type of ACHD were recorded. Duration of congenital heart disease was defined as the duration of symptoms experienced before being diagnosed based on history. A thorough clinical evaluation was performed, focusing on signs and symptoms of heart failure. The severity of heart failure was assessed using MRS, which considers symptoms such as tachypnea, hepatomegaly, feeding difficulty, and growth failure. Depending on their severity, the heart failure symptoms were ranked from 0 to 1 or 2 points. Patients were categorized using this score as having mild (3–6 points), moderate

(7-9 points), severe heart failure (10-12 points), or no heart failure (0-2 points) [6].

Statistical analysis

Data analysis was performed using statistical software, e.g., RStudio version 4.2.3 (2023-03-15). Continuous variables were expressed as mean \pm standard deviation (SD) and compared using paired t-tests or Wilcoxon signed-rank tests as appropriate. The relationship between TRP and MRS was analyzed using Pearson's (r) or Spearman's correlation coefficient, depending on data distribution. A p-value of less than 0.05 was considered statistically significant.

Table 1. Characteristics of children with acyanotic congenital heart disease receiving sildenafil therapy

Gender Male 17 Female 28 Age (months) Median (min-max) 60.0 (2 Nutritional status Body weight (kg), mean ± SD 18. Severe malnutrition 19 Mild malnutrition 11 Normal 17 Type of defect solated ASD 10 solated VSD 10 solated PDA 7 Aortopulmonary window 1 AVSD 8 ASD + PDA 2 VSD + PDA 2 Duration of CHD < 1 year	7 (37.8) 8 (62.2) 24.0–132.0) 1 ± 11.4 (17.8) 9 (42.2) 1 (24.4) 1 (2.2)				
Male 17 Female 28 Age (months) Median (min-max) 60.0 (2 Nutritional status Body weight (kg), mean ± SD 18. Severe malnutrition 19 Moderate malnutrition 11 Mild malnutrition 11 Normal 12 solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window 1 AVSD 8 ASD + PDA 2 VSD + PDA 2 V	3 (62.2) 24.0–132.0) 1 ± 11.4 (17.8) 9 (42.2)				
Age (months) Age (months) Median (min-max) 60.0 (2 Nutritional status Body weight (kg), mean ± SD 18. Severe malnutrition 19. Moderate malnutrition 11. Type of defect solated ASD 12. solated VSD 10. solated PDA 7 Aortopulmonary window 7 ASD + PDA 3 VSD + PDA 4 Duration of CHD < 1 year 26 Duration of sildenafil therapy	3 (62.2) 24.0–132.0) 1 ± 11.4 (17.8) 9 (42.2)				
Age (months) Median (min-max) 60.0 (2 Nutritional status Body weight (kg), mean ± SD 18. Severe malnutrition 8 Moderate malnutrition 15 Mild malnutrition 17 Normal 7 Type of defect solated ASD 10 solated VSD 10 solated PDA 7 Aortopulmonary window 1 ASD + PDA 2 VSD + PDA 2	24.0–132.0) 1 ± 11.4 (17.8) 0 (42.2) 1 (24.4)				
Median (min-max) 60.0 (2 Nutritional status Body weight (kg), mean ± SD 18. Severe malnutrition 8 Moderate malnutrition 15 Type of defect solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window 7 ASD + PDA 2 VSD + PDA 3 <	1 ± 11.4 (17.8) 0 (42.2) 1 (24.4)				
Nutritional status Body weight (kg), mean ± SD 18. Severe malnutrition 8 Moderate malnutrition 15 Mild malnutrition 17 Normal 7 Type of defect solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window 1 ASD + PDA 3 VSD + PDA 4 VSD + PDA 4 VSD + PDA 2 VSD + PDA 3 VSD + PDA 4 VSD + PDA 4 VSD	1 ± 11.4 (17.8) 0 (42.2) 1 (24.4)				
Severe malnutrition 8	(17.8) 9 (42.2) 1 (24.4)				
Severe malnutrition 8 Moderate malnutrition 15 Mild malnutrition 17 Type of defect solated ASD solated VSD 10 solated PDA 7 Aortopulmonary window 1 AVSD 8 ASD + PDA 3 VSD + PDA 4	(17.8) 9 (42.2) 1 (24.4)				
Moderate malnutrition 19 Mild malnutrition 11 Type of defect solated ASD solated VSD 10 solated PDA 7 Aortopulmonary window 1 ASD + PDA 3 VSD + PDA 2 VSD + PDA 3 VSD + PDA 4 VSD + PDA 4 </td <td>9 (42.2) 1 (24.4)</td>	9 (42.2) 1 (24.4)				
Mild malnutrition 11 Normal Type of defect solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window 1 ASD + PDA 3 VSD + PDA 4	(24.4)				
Type of defect solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window 1 ASD + PDA 3 VSD + PDA 4 Duration of CHD 1 1 year 28 Duration of sildenafil therapy					
Type of defect solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window 1 AVSD 8 ASD + PDA 3 VSD + PDA 4 Duration of CHD 17 < 1 year	(2.2)				
solated ASD 12 solated VSD 10 solated PDA 7 Aortopulmonary window AVSD 8 ASD + PDA 3 VSD + PDA 4					
solated VSD 10 solated PDA 7 Aortopulmonary window 1 AVSD 8 ASD + PDA 3 VSD + PDA 4 Duration of CHD 1 < 1 year					
solated PDA 7 Aortopulmonary window 1 AVSD 8 ASD + PDA 3 VSD + PDA 4 Duration of CHD 17 ≥ 1 year 28 Duration of sildenafil therapy	2 (26.7)				
Aortopulmonary window AVSD ASD + PDA VSD + PDA Duration of CHD < 1 year ≥ 1 year 28 Duration of sildenafil therapy	(22.2)				
AVSD 8 ASD + PDA 3 VSD + PDA 4 **Duration of CHD** < 1 year 17 ≥ 1 year 28 **Duration of sildenafil therapy**	(15.6)				
ASD + PDA VSD + PDA Duration of CHD < 1 year ≥ 1 year 28 Duration of sildenafil therapy	(2.2)				
Duration of CHD < 1 year ≥ 1 year 28 Duration of sildenafil therapy	(17.8)				
Duration of CHD < 1 year 17 ≥ 1 year 28 Duration of sildenafil therapy	3 (6.7)				
1 year 17 ≥ 1 year 28 Duration of sildenafil therapy	l (8.9)				
≥ 1 year 28 Duration of sildenafil therapy					
Duration of sildenafil therapy	7 (37.8)				
	3 (62.2)				
0					
< 3 months 18	3 (40.0)				
≥ 3 months 27	7 (60.0)				
MRS					
Mean ± SD, points 4.9					
No heart failure 2	6 ± 1.95				
Mild heart failure 35	6 ± 1.95 2 (4.4)				
Moderate heart failure 8					
Severe heart failure (2 (4.4)				

Notes: ASD — atrial septal defect; VSD — ventricular septal defect; PDA — patent ductus arteriosus; AVSD — atrioventricular septal defect.

Results

Demographic and clinical characteristics of research subjects

A total of 45 pediatric patients with ACHD and clinical heart failure were included in the analysis. The majority were female (n = 28, 62.2 %), with males comprising 37.8 % (n = 17). The median age was 60 months (range: 24.0–132.0), and the mean body weight was 18.1 ± 11.4 kg (Table 1). The most common congenital heart defect was isolated ASD in 12 patients (26.7 %). Nutritional assessment showed that 19 patients (42.2 %) had moderate malnutrition, 11 (24.4 %) had mild malnutrition, and 8 (17.8 %) had severe malnutrition.

All patients were evaluated using MRS to quantify heart failure severity. The mean total MRS was 4.96 ± 1.95 , with scores ranging from 2 to 9. Analysis of subcomponents showed the following distributions: diaphoresis involving only the head (57.8 %), tachypnea several times per day (77.8 %), and hepatomegaly measuring 2–3 cm (73.3 %). These findings indicate a moderate burden of heart failure symptoms in this cohort (Table 2).

Table 2. Characteristics of MRS components

Components	n (%)			
Diaphoresis				
Head only	26 (57.8)			
Head and body at exertion	19 (42.2)			
Head and body at rest	0 (0.0)			
Tachypnea				
Rare	4 (8.9)			
Several times	35 (77.8)			
Frequent	6 (13.3)			
Breathing pattern				
Normal	36 (80.0)			
Retraction	6 (13.3)			
Dyspnea	3 (6.7)			
Vital signs				
Respiratory rate, mean (breaths/min)	39.0			
Heart rate, mean (bpm)	135.2			
Hepatomegaly size				
< 2 cm	6 (13.3)			
2–3 cm	33 (73.3)			
> 3 cm	6 (13.3)			

All patients had complete clinical and echocardiographic data, including TRP, body weight, and MRS. The mean TRP estimated via echocardiography was 50.9 \pm 26.4 mmHg (range: 15–109 mmHg). Pulmonary artery systolic pressure (PASP) averaged 56.3 \pm 26.1 mmHg. Ejection fraction was preserved in all patients, with values mostly exceeding 60 %, confirming intact left ventricular systolic function (Table 3).

The association between TRP and MRS

To assess the association between echocardiographic and clinical parameters, Pearson correlation coefficients were calculated (Table 4). A moderate positive correlation was identified between TRP and MRS (r = 0.401, p = 0.006), indicating that elevated TRP was associated with higher MRS. This finding suggests that increased right ventricular afterload and estimated pulmonary artery pressure, as inferred from TRP, may correlate with worsened clinical symptoms of heart failure as reflected in MRS. By contrast, the association between TRP and body weight was weak and statistically non-significant (r = -0.148, p = 0.332) implying that in this sample, variations in body weight were not linearly associated with TR gradients and may be more reflective of age or nutritional status rather than hemodynamic compromise.

To determine whether TRP and body weight independently predicted MRS, a multiple linear regression model was constructed using these two variables as predictors. The model was statistically significant overall (F(2, 42) = 4.04, p = 0.025), explaining approximately 16.1 % of the variance in MRS (R² = 0.161; adjusted R² = 0.121).

Among the predictors, TRP emerged as a statistically significant independent variable ($\beta=0.030,\,95\%$ CI: $0.009-0.051,\,p=0.007$). This means that for every 1 mmHg increase in TRP, MRS was expected to increase by approximately 0.03 points, after controlling for body weight. This result reinforces the clinical relevance of echocardiographically estimated right heart pressures in predicting symptomatic severity in pediatric heart failure. Conversely, body weight was not a significant predictor of MRS ($\beta=-0.0007,\,95\%$ CI: -0.050 to $0.049,\,p=0.976$). The extremely wide confidence interval and near-zero slope suggest a negligible association, reaffirming the correlation findings and highlighting that body weight alone does not explain MRS variability in this population (Table 5).

Standardized beta coefficients further supported the primary role of TRP in the regression model. TRP had a standardized β of 0.419, whereas body weight had a near-zero standardized β of -0.003. This finding reinforces the interpretation that TRP is the dominant factor in predicting heart failure severity as measured by MRS.

Table 3. Characteristics of echocardiographic findings

	TRP gradient (mmHg), mean ± SD	42.5 ± 15.2	
Echocardiographic findings	PASP (mmHg), mean ± SD	56.3 ± 26.1	
	Ejection fraction (%), mean ± SD	75.9 ± 9.1	
	Mild	19 (42.2 %)	
TR grading	Moderate	11 (24.4 %)	
	Severe	15 (33.3 %)	

Table 4. Pearson correlation results

Variable comparison	Pearson's r	p-value	Interpretation
TRP vs MRS	0.401	0.006	Moderate, statistically significant correlation
TRP vs body weight	-0.148	0.332	Weak and non-significant correlation

Table 5. Multiple linear regression results

Predictor	β coefficient	95% CI	p-value	Interpretation
TRP	0.030	0.009-0.051	0.007	Significant predictor of higher MRS
Body weight	-0.0007	-0.050 to 0.049	0.976	Not a significant predictor

The comparison by duration of sildenafil therapy and ACHD diagnosis

A total of pediatric patients with ACHD receiving sildenafil therapy were evaluated to investigate the association between TRP and heart failure severity, as assessed by MRS.

Patients were divided into two groups based on the duration of sildenafil therapy: < 3 months and > 3 months. The median MRS was significantly higher in the < 3 months group (1.0) compared to the > 3 months group (1.0), with a p-value of 0.014, indicating more severe heart failure symptoms in the shorter duration group (Table 6). However, the difference in TRP between the two groups (69.0 vs. 40.5 mmHg) was not statistically significant (p = 0.373).

Patients were also grouped by the duration of ACHD diagnosis: < 1 year and > 1 year (Table 7). There was no significant difference in MRS between the two groups (median 1.0 in both; p = 1.000). Although TRP tended to be higher in those with a diagnosis duration > 1 year (43.0 vs. 30.0 mmHg), the difference did not reach statistical significance (p = 0.090).

Discussion

This study aimed to evaluate the correlation between TRP and heart failure severity, as measured by MRS, in children with ACHD undergoing sildenafil therapy. Most of our subjects had mild heart failure and the majority of abnormalities were atrial septal defects. A previous study found that most of their subjects had moderate heart failure according to their MRS and ventricular septal defects were the most common abnormality. This difference may have been due to our clinical practice of using the original Ross score to di-

Table 6. Comparison by duration of sildenafil therapy

Variable	Med	n value		
variable	< 3 months	> 3 months	p-value	
MRS	1.0	1.0	0.014	
TRP	69.0	40.5	0.373	

Table 7. Comparison by duration of ACHD diagnosis

Variable	Med	n volue		
variable	< 1 year	> 1 year	p-value	
MRS	1.0	1.0	1.000	
TRP	30.0	43.0	0.090	

agnose heart failure before the symptoms were reevaluated using MRS [20]. MRS has been used in previous studies to monitor heart failure severity and response to therapy in pediatric patients with congenital heart disease, reinforcing the utility in clinical and research settings [20, 21].

Our findings provide valuable insights into the hemodynamic effects of sildenafil in this specific pediatric population. The results showed a significant positive correlation between TRP and MRS for 3 months prior to sildenafil therapy, suggesting that elevated pulmonary pressures are associated with more severe heart failure symptoms. This aligns with the pathophysiology of ACHD, where volume overload and pulmonary hypertension contribute to increased right ventricular pressure and subsequent tricuspid regurgitation [22–24]. Following sildenafil therapy, both TRP and MRS showed a statistically significant reduction. Sildenafil, a phosphodiesterase-5 inhibitor, is known to lower pulmonary vascular resistance by enhancing nitric oxide-mediated vasodilation [16, 25]. A previous study demonstrated that sildenafil significantly reduces mean pulmonary arterial pressure in children with pulmonary hypertension, leading to greater hemodynamic improvement compared to conventional therapy [26]. The improvement in TRP indicates effective pulmonary vasodilation, which may have reduced the right ventricular afterload, indirectly improving left ventricular filling and systemic perfusion [27]. This is further supported by hemodynamic measurements showing sildenafil-induced increases in cardiac index, stroke volume, and right ventricular direct flow fraction [28]. Furthermore, the reduction in MRS reflects a clinical improvement in heart failure symptoms, likely due to decreased pulmonary congestion and enhanced cardiac output [29]. The observed correlation between the changes in TRP and MRS supports the hypothesis that sildenafil has a dual benefit — hemodynamic improvement and symptomatic relief. These findings are consistent with previous studies that demonstrated the efficacy of sildenafil in pediatric pulmonary hypertension and heart failure management [16, 30, 31]. However, this study uniquely emphasizes its role specifically in ACHD-related heart failure, where the interplay between pulmonary pressures and systemic symptoms is particularly pronounced.

Limitation

Despite the promising results, several limitations should be acknowledged. This study did not compare TRP measurements with invasive catheter-based pressures or serum biomarkers

such as BNP/NT-proBNP, which may provide additional hemodynamic insight. The sample size was relatively small, and the study design did not include a control group. Additionally, the duration of therapy and follow-up was limited, which may not capture long-term effects or adverse outcomes. Further randomized controlled trials with larger cohorts and extended follow-up are needed to validate these findings.

Conclusions

In conclusion, this study demonstrates a significant correlation between TRP and MRS in children with ACHD and highlights the potential therapeutic benefits of sildenafil in reducing pulmonary pressure and improving heart failure symptoms. These results support the consideration of sildenafil as a part of the management strategy in selected pediatric ACHD patients with evidence of elevated pulmonary pressures and clinical heart failure. Future studies should consider a multicenter, longitudinal design with a larger and more diverse pediatric population to validate these findings. Prospective cohort studies are recommended to investigate the temporal relationship between TRP changes and progression or improvement in heart failure symptoms during sildenafil therapy. Incorporating cardiac catheterization data could provide more accurate pressure measurements to complement echocardiographic estimations. Moreover, subgroup analysis based on specific types of acyanotic congenital heart disease (e.g., VSD, ASD, PDA) may help clarify pathophysiological differences. It would also be valuable to assess the impact of sildenafil therapy duration, dosage, and combination with other pharmacologic treatments on clinical outcomes. Exploring biomarkers or genetic factors contributing to variability in response could offer further insights into individualized treatment strategies.

Acknowledgments. The authors thank all the members of the Division of Pediatric Cardiology, Dr. Soetomo General Hospital Affiliated to Universitas Airlangga Faculty of Medicine for supporting us.

Ethics approval. This work was approved by the Dr. Soetomo General Hospital Ethics Committee. All procedures were followed in accordance with the ethical standards of the committee responsible for human experimentation (institutional or regional). Informed consent was required in the present study.

References

- 1. Kartika H, Taufiq H, Utamayasa I, Rahman MA, Ontoseno T. Clinical Profile of Pediatric Patients with Congenital Heart Disease in Dr. Soetomo General Hospital Surabaya. Indian J Forensic Med Toxicol. 2021;15(2):202-6. Available from: https://medicopublication.com/index.php/ijfmt/article/view/14306/12963.
- 2. Parvar SY, Ghaderpanah R, Naghshzan A. Prevalence of congenital heart disease according to the echocardiography findings in 8145 neonates, multicenter study in southern Iran. Health Sci Rep. 2023;6(4):e1178. doi: 10.1002/hsr2.1178.
- 3. Sherzad AG, Zalmai AS, Zafarzai I, Zazai MK, Zeng Q. Assessing the Frequency of Congenital Heart Diseases Among Children in Eastern Afghanistan. PHMT. 2024;15:299-309. doi: 10.2147/PHMT.8481934.
- 4. Xu J, Li Q, Deng L, Xiong J, Cheng Z, Ye C. Global, regional, and national epidemiology of congenital heart disease in children from

- 1990 to 2021. Front Cardiovasc Med. 2025;12. doi: 10.3389/fcvm.2025. 1522644.
- 5. Yang E, Lin H, Zhang Y, Zhang Y, Chen F. Evolving global patterns of congenital heart anomalies from 1990 to 2021. Arch Med Sci. 2025;21(4):1201-12. doi: 10.5114/aoms/205265.
- 6. Utamayasa IKA, Rahman MA, Hidayat T, Wicaksono H, Nastiti PH. Seminar Deteksi Dini Penyakit Jantung Bawaan pada Anak dengan Pemeriksaan Pulse Oxymetri dan Ekokardiografi di RSUD dr. Mohammad Zyn Sampang. Jurnal Abdi Masyarakat Indonesia. 2024 Nov 2;4(6):1547-54. doi: 10.54082/jamsi.1354.
- 7. Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary hypertension and right ventricle: A pathophysiological insight. Clinical Medicine Insights: Cardiology. 2024;18:11795468241274744. doi: 10.1177/11795468241274744.
- 8. Handoyo E, Gunawijaya E, Yantie NPVK. Factors associated with uncorrectable congenital heart disease in children with pulmonary arterial hypertension. Med J Indones. 2023;32:38-44. doi: 10.13181/mji.oa.236582.
- 9. Malakan Rad E, Elhamian R, Zanjani KS, Shabanian R, Moghadam EA, et al. Echocardiographic estimation of pulmonary arterial and right atrial pressures in children with congenital heart disease: a comprehensive prospective study and introduction of novel equations. Journal of Cardiovascular Imaging. 2024;32(1):23. doi: 10.1186/s44348-024-00023-4.
- 10. Nakano SJ, Miyamoto SD, Price JF, Rossano JW, Cabrera AG. Pediatric Heart Failure: An Evolving Public Health Concern. The Journal of Pediatrics. 2020;218:217-21. doi: 10.1016/j.jpeds.2019.09.049.
- 11. Villaseca-Rojas Y, Varela-Melo J, Torres-Castro R, Vasconcello-Castillo L, Mazzucco G, et al. Exercise Capacity in Children and Adolescents with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2022;9:874700. doi: 10.3389/fcvm.2022.874700.
- 12. Alsaid SF, Hidayat T, Soebroto H. Quality of Life in Children with Acyanotic Congenital Heart Disease in Dr. Soetomo General Hospital, Surabaya, Indonesia. Cardiovascular and Cardiometabolic Journal. 2022;3(1). doi: 10.20473/ccj.v3i1.2022.1-8.
- 13. He Q, Lin X, Zhou Z, Shen H, Ma K, et al. Failure to thrive in pediatric patients with congenital heart disease: a cross-sectional study of 13,256 patients. Lancet Reg Health West Pac. 2024;44. doi: 10.1016/j. lanwpc.2023.101002.
- 14. Shaarawy SA, Morsy SM, Khalifa NA, Ahmed AI. Comparative Study Between Modified Ross Score and Pediatric Heart Failure Index using pro-BNP in Quantifying Severity of Heart Failure in Pediatrics. Zagazig University Medical Journal. 2023;29(1.2):17-24. doi: 10.21608/zumj.2020.30323.185.
- 15. Hassan ES, Ahmad SEA, Mohamad IL, Ahmad FA. The value of modified Ross score in the evaluation of children with severe lower respiratory tract infection admitted to the pediatric intensive care unit. Eur J Pediatr. 2023;182(2):741-7. doi: 10.1007/s00431-022-04737-9.
- 16. Awad AK, Gad ER, Abdelgalil MS, Elsaeidy AS, Ahmed O, Elbadawy MA. Sildenafil for congenital heart diseases induced pulmonary hypertension, a meta-analysis of randomized controlled trials. BMC Pediatrics. 2023;23(1):372. doi: 10.1186/s12887-023-04180-1.
- 17. Cohen JL, Nees SN, Valencia GA, Rosenzweig EB, Krishnan US. Sildenafil use in children with pulmonary hypertension. The Journal of Pediatrics. 2019;205:29-34. doi: 10.1016/j.jpeds.2018.09.067.
- 18. Desai K, Di Lorenzo M, Zuckerman WA, Emeruwa E, Krishnan US. Safety and efficacy of sildenafil for group 2 pulmonary hypertension in left heart failure. Children. 2023;10(2):270. doi: 10.3390/children10020270.
- 19. Jiang L, Sun W, Zhang K, Zhou B, Kong X. Perioperative Sildenafil Therapy in Pediatric Congenital Cardiac Disease Patients: A Meta-Analysis. International Heart Journal. 2018;59(6):1333-9.

- 20. Setiyawan IMK, Yantie NPVK, Widnyana AANKP, Sidiartha IGL, Karyana PG, Arimbawa IM. Modified Ross score and echocardiographic score in children with heart failure: a subgroup analysis. Paediatrica Indonesiana. 2024;64(3):202-8. Available from: https://paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/3381.
- 21. Bijelic M, Djukic M, Vukomanovic V, Parezanovic V, Lazic M, et al. Clinical and Hemodynamic Outcomes with Enalapril Orodispersible Minitablets in Young Children with Heart Failure Due to Congenital Heart Disease. J Clin Med. 2024;13(17):4976. doi: 10.3390/jcm13174976.
- 22. Li W, Shang W, Huang J. Pulmonary artery systolic pressure associated with inflammatory factors among pediatric congenital heart disease with pulmonary arterial hypertension after cardiopulmonary bypass. Jornal de Pediatria. 2025;101(3):438-44. doi: 10.1016/j. jped.2025.01.006.
- 23. Hussain K, Mandras SA, Desai S. Right Heart Failure. In: Stat-Pearls. StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK459381/.
- 24. Kim BJ, Thomas JD. Echocardiographic Parameters of the Right Ventricle in Patients with Pulmonary Hypertension: A Review. Korean Circulation Journal. 2025;55(4):259-74.
- 25. Karedath J, Dar H, Ganipineni VDP, Gorle SA, Gaddipati S, et al. Effect of phosphodiesterase-5 (PDE-5) inhibitors on clinical outcomes in patients with pulmonary hypertension: a meta-analysis of randomized control trials. Cureus. 2023;15(1). doi: 10.7759/cureus.33363.
- 26. William MB, Ali MAS, Farghaly HS, Elfaham TH. Effectiveness and short-term survival associated with adding sildenafil to conventio-

- nal therapy in the management of children with pulmonary hypertension. Progress in Pediatric Cardiology. 2020;56:101168. doi: 10.1016/j.ppedcard.2019.101168.
- 27. Murni IK, Siagian EM, Nurnaningsih N, Arafuri N. Tricuspid regurgitation pressure gradient to diagnose pulmonary hypertension: a diagnostic accuracy study. Paediatrica Indonesiana. 2022;62(6):367-72. Available from: https://paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/2718.
- 28. Corrado PA, Barton GP, Francois CJ, Wieben O, Goss KN. Sildenafil administration improves right ventricular function on 4D flow MRI in young adults born premature. Am J Physiol Heart Circ Physiol. 2021;320(6):H2295-304. doi: 10.1152/ajpheart.00824.2020.
- 29. Rosenzweig EB, Abman SH, Adatia I, Beghetti M, Bonnet D, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. European Respiratory Journal. 2019;53(1). doi: 10.1183/13993003.01916-2018.
- 30. Arafuri N, Murni IK, Idris NS, Uiterwaal CS, Savitri AI, et al. Survival of left-to-right shunt repair in children with pulmonary arterial hypertension at a tertiary hospital in a low-to-middle-income country. Global Heart. 2021;16(1):25. doi: 10.5334/GH.831.
- 31. Gorenflo M, Ziesenitz VC. Treatment of pulmonary arterial hypertension in children. Cardiovascular Diagnosis and Therapy. 2021;11(4):1144159-1141159. doi: 10.21037/cdt-20-912.

Received 02.08.2025 Revised 10.09.2025 Accepted 16.09.2025

Information about authors

I Ketut Alit Utamayasa, MD, Paediatric Cardiologist Consultant, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; e-mail: ketut.alit.utamayasa@fk.unair.ac.id; https://orcid.org/0000-0002-2510-8689

PrimaHari Nastiti, MD, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; e-mail: prima. hari.nastiti-2019@fk.unair.ac.id; https://orcid.org/0000-0003-2911-862X

Mahrus A. Rahman, MD, Paediatric Cardiologist Consultant, Department of Child Health, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; e-mail: mahrus.a@fk.unair.ac.id; https://orcid.org/0000-0001-5129-457X

Conflicts of interest. Authors declare the absence of any conflicts of interest and own financial interests that might be construed to influence the results or interpretation of the manuscript.

Authors' contribution. I Ketut Alit Utamayasa — conceptualization, visualization, original draft, reviewing and editing; Prima Hari Nastiti — conceptualization, methodology, visualization, original draft, reviewing and editing; Mahrus A. Rahman — methodology, project administration, visualization, original draft, reviewing and editing.

I Ketut Alit Utamayasa, Prima Hari Nastiti, Mahrus A. Rahman Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

3в'язок між тиском при трикуспідальній регургітації і тяжкістю серцевої недостатності в дітей з аціанотичною вродженою вадою серця, які отримують терапію силденафілом

Резюме. Актуальність. Аціанотична вроджена вада серця (АВВС) часто призводить до об'ємного перевантаження правого шлуночка й підвищення тиску в легенях, що обумовлює розвиток серцевої недостатності в дітей. Тиск при трикуспідальній регургітації (ТТР), визначений за допомогою ехокардіографії, є неінвазивним маркером легеневої гіпертензії та перевантаження правих відділів серця. Інгібітор фосфодіестерази-5 силденафіл широко використовується для зниження легеневого судинного опору в дітей із вродженими вадами серця. Мета: оцінити кореляцію між ехокардіографічними показниками ТТР і тяжкістю серцевої недостатності, оціненою за модифікованою шкалою Росса, у дітей з АВВС, які отримують терапію силденафілом. Матеріали та методи. Поперечне обсерваційне дослідження за участю 45 дітей з АВВС та клінічними ознаками серцевої недостатності було проведено в лікарні загального профілю Dr. Soetomo (Сурабая, Індонезія) з січня до травня 2025 року. ТТР визначали за допомогою доплерівської ехокардіографії, а тяжкість серце-

вої недостатності оцінювали за модифікованою шкалою Росса. Дані проаналізовано за допомогою кореляції Пірсона та множинної лінійної регресії. Результати. Виявлено помірний позитивний зв'язок між ТТР та оцінкою за модифікованою шкалою Росса (r = 0,401; p = 0,006). TTP > 38 мм рт.ст. асоціювався з більш тяжкою серцевою недостатністю та недоїданням. Терапію силденафілом понад 3 місяці отримували 66,7 % пацієнтів. Регресійна модель показала, що ТТР є незалежним предиктором тяжкості серцевої недостатності $(\beta = 0,030; p = 0,007)$, тоді як маса тіла не мала статистично значущого впливу. Висновки. Підвищений ТТР корелює зі збільшенням тяжкості серцевої недостатності в дітей з АВВС, які отримують терапію силденафілом. Ехокардіографічне визначення ТТР може бути корисним неінвазивним маркером для моніторингу перебігу захворювання й ефективності лікування.

Ключові слова: серцева недостатність у дітей; модифікована шкала Росса; вроджені вади серця

Оригінальні дослідження / Original Researches

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1923

Awsam Abdulsattar Marzaali¹, Ali Abid Abojassim²

¹Ministry of Education, General Directorate for Thi-Qar Education, Thi-Qar, Iraq

²Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Iraq

Effect of NORM in snack foods on children's health in Iraq

Abstract. Food products contained varying amounts of naturally occurring radioactive materials (NORM), and these differences were ascribed to such as climate, farming techniques, and background radiation levels. It is acknowledged that these radionuclides are the primary reasons why people are exposed to radiation internally. Of the radionuclides found in nature, the ones from the decay series of ²³⁸U, ²³²Th, and ⁴⁰K are the ones that should be protected against radiation the most. The levels of natural radioactivity in snack foods consumed by primary school-age (6–12 years) children is measured with a detector for NaI(Tl) gamma-ray spectroscopy. The range values of activity per unit mass (specific activity) of ²³⁸U, ²³²Th, and ⁴⁰K were 12.32 to 28.41, 1 to 17.4, and 375.16 to 686.8 Bq/kg, respectively. According to UNSCEAR and ICRP, the excess lifetime cancer risk and total annual effective dose rate were below acceptable levels in the majority of the samples under study.

Keywords: radionuclides; foodstuff; effective dose; cancer risk

Introduction

There are naturally occurring radionuclides in all human environments, including the air, water, and land, as well as food [1]. Since humans are products of our environment, they may also be present in us. Radionuclides found in nature are made up of both primordial and cosmogonic components, depending on where they came from [1]. There is a detectable level of radioactivity in these environmental components. In addition to the potential growing risk to the human population as a result of the food chain, the particular metabolic trait of the plant species may cause radionuclides to aggregate in their organs, which may also depend on the physico-chemical properties of the soil [2]. A single series of radionuclides, such as 40K, and long-term radionuclide decay series, such as ²³⁸U and ²³²Th, exist in different amounts on Earth and in the atmosphere [3]. However, due to the extended half-life of nuclides, this chain continues to exist today. The radioactive ⁴⁰K is only 0.012 % of the total weight of natural potassium, which is mostly composed of the stable isotope ³⁹K. However, two uranium radionuclides and one thorium radionuclide decay to produce radionuclide decay chains that start in three different series [3]. ²³²Th, ⁴⁰K, and 238 U have half-lives of 7.13×10^{8} , 1.39×10^{10} , and 1.28×10^{9} years, respectively. [4]. Humans may acquire cancer of the bone and hazard cavity following extended exposure to certain dosages of ²³⁸U, ²³²Th, and ⁴⁰K. When radium enters the body by the mouth or nose, its metabolism is similar to that of calcium, which settles in the bone and leaves behind a residue fraction that is uniformly distributed throughout the soft tissues. Consequently, the two natural series of uranium and thorium, ²²⁶Ra and ²²⁸Ra, are the most radiotoxic of the many radionuclides in the radioactive decay chain [5]. Investigating naturally occurring radioactivity in food is essential for understanding how radiation affects people. In order to assess the magnitude variation in the natural background process over time as a result of the radioactivity spread, it is important to measure the natural radioactivity study in the food [6]. One essential element of the environmental monitoring program is the detection of radionuclides in food. The majority of human radiation exposure comes from these naturally occurring radioactive sources; 40K is found in almost all foods since it is an essential part of cellular matter [6]. The human body can absorb radionuclides through the mouth or through inhalation. Radionuclides can build up in particular body parts after being consumed. Therefore, consuming food that contains radionuclides can account for a

For correspondence: Ali Abid Abojassim, Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Iraq; e-mail: ali.alhameedawi@uokufa.edu.iq Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

sizable amount of the radiation exposure that various body organs receive. This component is essential for determining long-term health hazards. A person's internal radiation exposure is influenced by the natural and synthetic radionuclides found in food. Research indicates that food consumption accounts for a substantial amount, about one-eighth, of the average yearly exposure from natural sources. Therefore, long-term health issues heavily depend on the radiation dosages received by different human organs [7]. These radioactive particles can damage cells and human health when they eventually decay after entering organs. It is essential to track and document the presence of radioactive elements in food products and the environment in order to safeguard human health. The information gathered can be used as pertinent criteria to assess radioactive hazards [7]. There have been many researchers all over the world in the last two years measuring the natural radioactivity in foodstuffs [8–10]. The aim of the current investigation to measure the natural radioactivity concentrations in foods consumed by schoolage (6–12 years) children using gamma spectroscopy. Additionally, it aims at calculating the effective annual dose plus assuming the risk of cancer.

Materials and methods

The samples utilized in this investigation were gathered from local Iraqi markets. The samples consisted of 20 samples of foods consumed by primary school children, including biscuit, chips, instant noodles, sunflower seeds, and chocolate, with different brand names and from different sources. Details of the foods used in the current study are shown in Table 1.

Table 1. Samples of food in the current study

Food type	Sample name	Sample code	Producing country
	Susamli	FC1	Turkey
	Fiyonk	FC2	Turkey
Biscuit	McVitie's	FC3	UK
	Coffee Joy	FC4	Iran
	Weetabix	FC5	Morocco
	Nice	FC6	Iraq
	Halla	FC7	Iraq
Chips	Doritos	FC8	Iraq
	Lucy	FC9	Iraq
	Lays	FC10	Iraq
	Samy	FC11	Korea
Noodles	Indomie	FC12	Saudi Arabia
	Kleen	FC13	Iran
	Pasa	FC14	Iraq
Sunflower	Al-Yousif	FC15	Iraq
seeds	Al-Sultan	FC16	Iraq
	Al-Saqar	FC17	Iraq
Chocolate	Nut-dirat	FC18	Iraq
(cacao, cus-	Altunsa	FC19	Jordan
tard and jelly)	Alen	FC20	Turkey

Samples of food for children were collected from a variety of local origins and accessible in Iraqi marketplaces. To get them ready for actual measurements, they were subsequently taken to the Nuclear Physics and Radiation Laboratory, which is housed in the Physics Department of the College of Science at the University of Kufa. After collecting the food samples from the markets, they were placed in 1 kg plastic bags, numbered, and labeled with the company name. They were then transported to the workplace for measurement, where they were heated at a temperature of 70 °C for one hour. After heating, the samples were ground using an electric grinder and then sieved using a mesh with an approximate diameter of 2 mm to obtain homogeneous samples. Their weight was determined using a digital scale. The samples were left for about a month to achieve radioactive equilibrium. Subsequently, the Marinelli beaker was thoroughly washed with diluted hydrochloric acid and distilled water. The studied samples were then placed in a one-liter Marinelli container, sealed with adhesive tape, and labeled with the relevant information. They were prepared for measuring the natural radioactivity of uranium, thorium, and potassium nuclei. Then, after the end of time stored, NaI(Tl) spectrometry technique was used to determine the specific activity and concentrations of ²³⁸U, ²³²Th, and 40K in the samples of the present work for time counting about 18,000 seconds (5 hours). It is worth mentioning that, the NaI(Tl) detector (size 3×3 , made in the USA, and manufactured by ORTEC company) was prepared for measurement before use by determining the operating of high voltage and determining both the calibration and efficiency using a standard source, which is 152Eu (standard of gamma-ray source). Moreover, the software used to analyze gamma spectroscopy in the present study is MAESTRO-32. So, there are three energies of photopeak of gamma-ray that were studied which are 1460, 1765, and 2614 keV for 40K, ²³⁸U (²¹⁴Bi), and ²³²Th (²⁰⁸Tl), respectively [11].

The activity per mass (specific activity, or A) for foodstuff samples that depend on net area (N), efficiency of detector (ε) , gamma probability (I), counting time (t), and mass of dry samples (m) was calculated by the following [8, 9]:

$$A = \frac{N}{t \times \varepsilon \times I_{v} \times m},$$

where it may convert specific activity in unit Bq/kg to concentrations in unit ppm, as follows: for 40 K (1 Bq/kg = 1/316 %), 238 U (1 Bq/kg = 1/12.4 ppm), and 232 Th (1 Bq/kg = 1/4.07 ppm) [12, 13].

Health risk factors like annual effective dose (AED) and excess life cancer risk (ELCR) resulting from consuming the foodstuffs of samples studies containing A (238 U), A (232 Th), and A (40 K) groups were determined. AED and ELCR were calculated according to several parameters such as CR (the amount of consumption rate in kg/year), CF_i (conversion factor in Sv/Bq), DL (rate of life in a year), and RF (risk factor in inverse sievert). Values of AED and ELCR were found by following [14, 15]:

$$AED\left(\frac{mSv}{y}\right) = (\sum_{i}^{3}A_{i} \times CF_{i}) \times CR;$$

$$ELCR = AED \times DL \times RF.$$

Results

The values of concentrations for natural radionuclide 238 U, 232 Th, and 40 K for 20 children food samples were scheduled in Table 2. The specific activity values of 238 U varied from 1.52 Bq/kg in sample FC14 (noodles) to 28.41 Bq/kg in sample FC9 (chips) with an average 12.32 ± 1.93 Bq/kg. Whereas the specific activity values 232 Th ranged from 1 Bq/kg in sample FC11 (noodles) to 17.4 Bq/kg in sample FC6 (chips) with an average 7.65 ± 1.10 Bq/kg. For 40 K, the specific activity ranged from 74 Bq/kg in sample FC4 (biscuit) to 686.8 Bq/kg in sample FC15 (sunflower seeds) with an average 375.16 ± 45.24 Bq/kg. Fig. 1–3 show the specific activity values of 238 U, 232 Th, and 40 K, respectively.

Comparison of the natural radioactivity of different types of foods consumed by children is given in Table 3. It shows that the highest average specific activity (Bq/kg) of ²³⁸U was recorded in the food type (chips) were 20.35, while the lowest average was in the food type (sunflower seeds) were 3.6. The noodles food type recorded the highest average specific activity (Bq/kg) of ²³²Th were 11.9 while the lowest value (7.24) were in biscuit. The average specific activity (Bq/kg) of ⁴⁰K ranged from 199.14 in noodles to 520.9 in chocolate food type.

AED and ELCR of children foods in the present investigation were shown in Table 4. AED (mSv/y) for 238 U varied from 0.002 mSv/y in the FC14 sample (sunflower seeds) to 0.495 mSv/y in the FC12 sample (noodles) with an average 0.153 \pm 0.034 mSv/y. The AED (mSv/y) for 232 Th were va-

ried from 0.001 mSv/y in the FC14 sample (sunflower seeds) to 0.161 mSv/y in the FC20 sample (chocolate jelly) with an average $0.029 \pm 0.008 \text{ mSv/y}$, while the AED (mSv/y) of ^{40}K varied from 0.002 mSv/y in the FC14 sample (sunflower seeds) to 0.288 mSv/y in the FC 20 sample (chocolate jelly) with an average $0.070 \pm 0.018 \text{ mSv/y}$. The AED total (mSv/y) varied from 0.005 in the FC14 sample to 0.611 in

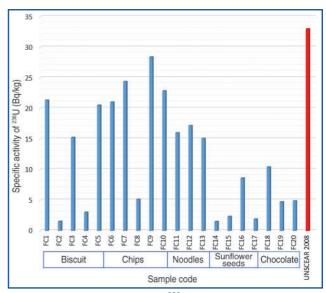


Figure 1. Results of ²³⁸U concentrations with safe limit

Table 2. Results of natural radioactivity in children food of the present work

Comple nome	Food time		Specific activity (Bq/kg	/kg)	
Sample name	Food type	²³⁸ U	²³² Th	⁴⁰ K	
FC1		21.36	9.1	409.71	
FC2		1.56	2.7	264.13	
FC3	Biscuit	15.27	3.5	285.77	
FC4		3.04	10.1	74.79	
FC5		20.54	10.8	429.74	
FC6		21.04	17.4	340.37	
FC7		24.4	8.6	666.68	
FC8	Chips	5.15	6.2	148.5	
FC9		28.41	1.9	673.2	
FC10		22.88	13.8	190.24	
FC11		16.02	1	242.49	
FC12	Noodles	17.19	6.5	103.15	
FC13		15.12	4.4	251.91	
FC14		1.52	2.9	103.84	
FC15	Cumflauran agada	2.36	9.8	686.8	
FC16	Sunflower seeds	8.62	2.2	667.22	
FC17		1.93	16.2	401.9	
FC18		10.44	5.4	436.13	
FC19	Chocolate (cacao, custard and jelly)	4.74	5	510.6	
FC20	odotara aria jeriy)	4.9	15.4	615.97	
Range		1.52–28.41	1–17.4	74–686.8	
Average ± SE		12.32 ± 1.93	7.65 ± 1.10	375.16 ± 45.24	

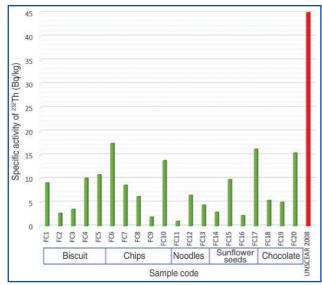


Figure 2. Results of ²³²Th concentrations with safe limit

Table 3. Comparison of natural radioactivity of different types of foods

Food type	Average specific activity (Bq/kg)		
	²³⁸ U	²³² Th	⁴⁰ K
Biscuit	12.35	7.24	292.82
Chips	20.37	9.58	403.79
Noodles	16.11	11.9	199.18
Sunflower seeds	3.60	7.775	464.94
Chocolate (cacao, custard and jelly)	6.69	8.6	520.9

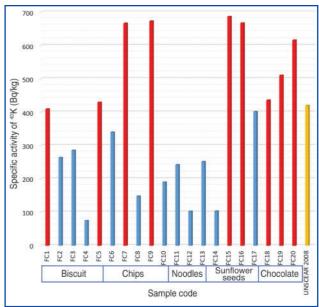


Figure 3. Results of ⁴⁰K concentrations with safe limit

the FC12 sample with an average 0.253 \pm 0.050. Moreover, ELCR values ranged from 0.018 to 2.139 with an average 0.887 \pm 0.176. According to ICRP [16], all AED values were below the suggested value of 1 mSv/y because of food consumption. All ELCR results remained within the global limit $2.5\times10^{-3}\,according$ to ICRP [16]. Fig. 4 shows the comparison of AED, and ELCR with the safe of global limits.

Discussion

The values of activity per unit mass of uranium-238, thorium-232, and potassium-40 in the 20 analyzed food

Table 4. Results of AED and ELCR in children food of the present work

Sample name		ELCR, × 10 ⁻³			
Sample name	²³⁸ U	²³² Th	⁴⁰ K	Total	ELCH, × 10 °
1	2	3	4	5	6
FC1	0.090	0.014	0.028	0.131	0.459
FC2	0.007	0.004	0.018	0.029	0.100
FC3	0.064	0.005	0.019	0.089	0.311
FC4	0.013	0.015	0.005	0.033	0.116
FC5	0.086	0.016	0.029	0.132	0.461
FC6	0.168	0.050	0.044	0.263	0.921
FC7	0.195	0.025	0.087	0.307	1.074
FC8	0.041	0.018	0.019	0.078	0.275
FC9	0.227	0.006	0.088	0.320	1.121
FC10	0.183	0.040	0.025	0.248	0.867
FC11	0.461	0.010	0.113	0.585	2.049
FC12	0.495	0.068	0.048	0.611	2.139
FC13	0.435	0.046	0.118	0.599	2.098
FC14	0.002	0.001	0.002	0.005	0.018
FC15	0.003	0.004	0.013	0.020	0.072
FC16	0.010	0.001	0.013	0.024	0.085

End of Table 4

1	2	3	4	5	6
FC17	0.002	0.007	0.008	0.017	0.060
FC18	0.301	0.056	0.204	0.561	1.964
FC19	0.137	0.052	0.239	0.428	1.497
FC20	0.141	0.161	0.288	0.590	2.066
Range	0.002-0.495	0.001–0.161	0.002-0.288	0.005–0.611	0.018–2.139
Average ± SE	0.153 ± 0.034	0.029 ± 0.008	0.070 ± 0.018	0.253 ± 0.050	0.887 ± 0.176

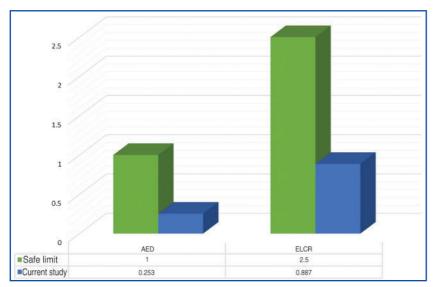


Figure 4. Comparison of AED and ELCR in the current work with the safe global limits

samples of the current study (Table 2, Fig. 1) were all within the UNSCEAR recommended upper limit of 33 Bq/kg [17]. Similarly, the thorium-232 (Table 2, Fig. 2) was below the internationally permitted upper limit of 45 Bq/kg [17]. In contrast, eight samples exceeded the internationally permitted upper limit for potassium-40 (Table 2, Fig. 3). All calculated AED values were below the International Commission on Radiological Protection recommended annual limit of 1 mSv/year [16] for ingestion, and the ELCR values were within the global upper limit of 2.5 × 10⁻¹ [16].

Conclusions

The values of activity per unit mass of ²³⁸U, ²³²Th, and ⁴⁰K for 20 children food samples were within the average values of safe global limit by UNSCEAR 2008, except 8 samples recorded above the global limit towards ⁴⁰K. Also, it was found that the AED in all samples and all age groups were within the average safe limit according to the ICRP report. The results of ELCR in all samples under investigation were within the average values of safe global limit by ICRP.

References

- 1. L'Annunziata MF, ed. Handbook of radioactivity analysis. Academic Press; 2012.
- 2. Vosniakos FK. Radioactivity transfer in environment and food. Springer Science & Business Media; 2012.
- 3. Shukla LI, Bareh AJ, Ashraf A, Goswami R, Vardhan PV. Food irradiation. In: Future Crops and Processing Technologies for Sustainabi-

lity and Nutritional Security. CRC Press; 2025. 146-173.

- 4. Poschl M, Nollet LM, eds. Radionuclide concentrations in food and the environment. CRC Press; 2006.
- 5. Abojassim AA, Dosh RJ, Abdulzahar AK. Radioactivity in soil. Curr Res Soil Sci. 2022:89:150-166.
- 6. Abojassim AA, Hashim RH, Mahdi NS. Basics of nuclear radiation. 2021.
- 7. Salih NF. Determination of natural radioactivity and radiological hazards of ²²⁶Ra, ²³²Th, and ⁴⁰K in the grains available at Penang markets, Malaysia, using high-purity germanium detector. ARO-The Scientific Journal of Koya University. 2018;6:71-77.
- 8. Dosh RJ, Kadhim SH, Abojassim AA, Hussein FAY. Natural radioactivity in Turkish foodstuff consumed in Iraq. J Radiat Res Appl Sci. 2024;17(1):100832.
 - 9. Mohammed ZB, Obai IS, Jaafar NA,

Abojassim AA, Al-Khayfawee AAG. Natural radioactivity in some local food samples consumed by children in Iraq. Curr Res Nutr Food Sci J. 2024:12(2):856-863.

- 10. Okedeyi SA, Ikuemonisan FE, Olajuwon OO, Atilade AO, Mustapha AO, et al. Assessment of natural radioactivity levels of ⁴⁰K, ²²⁶Ra and ²³²Th in some selected baby food in southwestern Nigeria. Caliphate J Sci Technol. 2024;6(2):175-183.
- 11. Abojassim AA, Jafer NA, Azeez AJ, Abdulzahra AH, Jebur LY, et al. Radiation dangers in Iranian ceramic samples in local markets. E3S Web Conf. 2024;583:04016.
- 12. Joel ES, Maxwell O, Adewoyin OO, Ehi-Eromosele CO, Embong Z, Oyawoye F. Assessment of natural radioactivity in various commercial tiles used for building purposes in Nigeria. MethodsX. 2018;5:8-19.
- 13. Measurement of radionuclides in food and the environment. Technical Reports Series No. 295. IAEA; 1989.
- 14. Eckerman K, Harrison J, Menzel HG, Clement CH. ICRP publication 119: compendium of dose coefficients based on ICRP publication 60. Ann ICRP. 2012;41:1-130.
- 15. Hamzah ZS, Hashim AK, Abojassim AA. Natural gamma emitters in grains samples of Kerbala governorate markets. AIP Conf Proc. 2022;2547(1).
- 16. ICRP. Age-dependent doses to members of the public from intake of radionuclides. Part 5: compilation of ingestion and inhalation dose coefficients (ICRP publication 72). Phys Med Biol. 1996;41:2807.
- 17. UNSCEAR. Epidemiological evaluation of radiation-induced cancer. UN Scientific Committee on the Effects of Atomic Radiation; 2000a.

Received 24.08.2025 Revised 17.10.2025 Accepted 03.11.2025

Information about authors

Awsam Abdulsattar Marzaali, Ministry of Education, General Directorate for Thi-Qar Education, Thi-Qar, Iraq Ali Abid Abojassim, Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Iraq; e-mail: ali.alhameedawi@uokufa.edu.iq

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Awsam Abdulsattar Marzaali¹, Ali Abid Abojassim²

¹Ministry of Education, General Directorate for Thi-Qar Education, Thi-Qar, Iraq

²Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Iraq

Вплив природних радіоактивних матеріалів у снеках на здоров'я дітей в Іраку

Резюме. Харчові продукти містять різну кількість природних радіоактивних матеріалів, і ці відмінності пояснюються такими факторами, як клімат, методи ведення сільського господарства й рівень фонової радіації. Визнано, що радіонукліди є основними причинами внутрішнього опромінення людей. Серед природних радіонуклідів найбільш значущими з точки зору радіаційного захисту є ізотопи рядів ²³⁸U, ²³²Th та ⁴⁰K. Рівень природної радіоактивності в снеках, що споживають діти молодшого шкільного віку (6–12 років), вимірю-

вали за допомогою детектора гамма-спектроскопії NaI(Tl). Діапазон активності на одиницю маси (питома активність) 238 U, 232 Th та 40 K становив відповідно $12,32-28,41,\ 1-17,4$ і $375,16-686,8\ Бк/кг.$ Згідно з даними НКДАР ООН та МКРЗ, надмірний ризик раку протягом життя й показники ефективної річної дози були нижчими за допустимі рівні в більшості досліджуваних зразків.

Ключові слова: радіонукліди; харчові продукти; ефективна доза; ризик раку

Оригінальні дослідження / Original Researches

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1924

Mushriq Abdullah Hussein Mustansiriyah University, Baghdad, Iraq

N-acetylcysteine therapy for pediatric non-acetaminophen-induced acute liver failure: a single center study

Abstract. Background. Acute decline in liver function determines the life-threatening disorder known as acute liver failure (ALF). Although N-acetylcysteine (NAC) is extensively utilized for acetaminophen-induced ALF, its function in non-acetaminophen ALF is still debatable. The purpose was to study the effectiveness of NAC in patients with ALF of various non-acetaminophen etiologies, with a focus on biochemical indicators, spontaneous hepatic recovery, and overall mortality. Materials and methods. Twenty-four patients aged 6 months to 13 years diagnosed with ALF were selected for this prospective observational research over a period of 6 months, from 1st of June to 1st of December 2024, at the Central Central Children's Teaching Hospital in Baghdad city. They received NAC during the admission to the hospital. Clinical features, markers including liver function tests, coagulation profiles in addition to clinical effectiveness, outcome, hospital length of stay and survival rates were evaluated. Results. The age of patients was 6 months to 13 years. The sex distribution was equal, with 12 (50 %) male and 12 (50 %) female patients. The average duration of illness prior to admission was 6.25 ± 3.35 days. The mean length of hospitalization was 7.75 ± 2.51 days. Half of the patients (50 %) had stage II liver failure, stage III and stage III-IV were reported in 33.33 and 16.67 % of the patients, respectively, jaundice and hepatomegaly were universal findings. Regarding etiology of liver failure, viral causes were most frequent (50%), followed by unknown causes (33.3%), while metabolic and others disorders (drugs, autoimmune hepatitis, Wilson disease) comprise 16.7 %. Total serum bilirubin showed a statistically significant decrease from a median of 12.65 mg/dL before treatment to $8.85\,\mathrm{mg/dL}$ after treatment. Alanine aminotransferase dropped from a median of $926.50\,\mathrm{to}$ 469.50 U/L with a highly statistical significance, while aspartate aminotransferase also showed a significant reduction from 801.50 to 504.50 U/L. The international normalized ratio significantly improved, decreasing from a median of 2.05 before treatment to 1.4 after treatment. Conclusions. This study shows that NAC may be useful as a treatment for acute liver failure in children, especially by improving liver biomarkers, and lowering coagulation abnormalities. Future research should concentrate on patient stratification by ALF etiology, the identification of predictive biomarkers for NAC responsiveness, and an evaluation of its long-term effects on survival and liver regeneration, although this is still up for debate.

Keywords: N-acetylcysteine; acute liver failure; survival rates; non-acetaminophen-induced failure

Introduction

In those without pre-existing liver disease, acute liver failure (ALF) is an uncommon but life-threatening disorder marked by coagulopathy, encephalopathy, and fast start of hepatic dysfunction [1]. With significant morbidity and death rates, the illness frequently advances quickly and requires immediate medical intervention many times including liver transplantation [2, 3]. ALF is linked with poor outcomes despite developments in critical care and liver transplantation methods, particularly in resource-limited environments where access to transplantation is restricted

[4]. Because it may restore hepatic glutathione reserves, reduce oxidative stress, and enhance mitochondrial activity, N-acetylcysteine (NAC) is a well-established therapy for acetaminophen-induced ALF [5]. These features have spurred research on non-acetaminophen-induced ALF, a diverse syndrome with many etiologies including viral hepatitis, autoimmune diseases, drug-induced liver damage, metabolic, and ischemic hepatopathy [6].

Scores that obtained to evaluate the functional hepatic capacity do not always coincide with progression of liver failure, especially in children. Therefore, it is prudent to also

For correspondence: Dr. Mushriq Abdullah Hussein, Mustansiriyah University, Baghdad, Iraq; e-mail: mushriq.abdullah@uomustansiriyah.edu.iq Full list of author information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

consider the clinical signs and the early changes in laboratory parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels, prothrombin time (PT), partial thromboplastin time (PTT), international normalized ratio (INR), ammonia, direct bilirubin, glucose, albumin level and, whenever possible, factor VII assay, to assess the progression and severity of the condition [7]. Although some studies have shown NAC's possible advantages in enhancing oxygen delivery, hemodynamic stability, and general survival in ALF, its effectiveness in non-acetaminophen-related patients is still a subject of much discussion [8].

In recent research, the use of NAC in non-acetaminophen ALF has produced contradictory results. Some studies reveal limited effectiveness or no significant benefits in severe cases or those with late-stage liver failure, while others claim higher survival rates and biochemical outcomes. Furthermore, complicating its general usage in clinical practice is the variability in clinical outcomes based on ALF etiology, timing of NAC administration, and the lack of standardized treatment techniques [9]. With conflicting findings, many studies have looked at how well NAC works in non-acetaminophen-induced ALF. In patients with non-acetaminophen ALF, Lee et al. undertook a randomized controlled study looking at NAC and found enhanced transplant-free survival in those with early-stage hepatic encephalopathy. The research underlined how NAC may help to improve oxygen supply and lower oxidative stress [10].

The purpose was to study the effectiveness of NAC in patients with ALF of various non-acetaminophen etiologies, with a focus on biochemical indicators, spontaneous hepatic recovery, and overall mortality.

Materials and methods Study design

This was a prospective observational research carried out over a period of 6 months from 1st of June to 1st of December 2024. The patients were admitted and diagnosed at the gastroenterology ward of the Central Children's Teaching Hospital in Baghdad city, Iraq.

Inclusion and exclusion criteria

Patients with ALF (defined as the onset of coagulopathy, INR > 1.5, and hepatic encephalopathy (grade 0-1 or 2-4) in patients without pre-existing liver disease) [11], without chronic underlying liver disease, were included in this study. Acute liver failure was primarily attributable to viral hepatitis (hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis E virus (HEV)), metabolic diseases or sepsis, autoimmune hepatitis, Wilson disease, and drug exposure (apart from paracetamol). The diagnosis of autoimmune hepatitis (AIH) was established if a patient had one or more positive autoantibody tests (anti-nuclear antibody $\geq 1:80$, smooth muscle antibody ≥ 1 : 20, liver-kidney microsomal antibody $\geq 1:20$) and no evidence of serologically defined viral hepatitis. Non-paracetamol drug-induced hepatitis was diagnosed if a temporal relationship between exposure to a suspected drug and the onset of ALF was established and other common causes were excluded. Hepatitis A, B, or E infection was confirmed serologically or by polymerase chain reaction (PCR). Metabolic diseases were diagnosed by laboratory tests (e.g., alpha-1-antitrypsin), analysis of liver tissue (e.g., mitochondrial enzyme defect). If the investigator suspected an infection or metabolic disease but lacked supporting evidence or if a specific diagnosis could not be established, the final diagnosis was registered as unknown [12].

Grading of pediatric hepatic encephalopathy was performed by using West Haven Criteria [13] (Table 1).

In case of hospital discharge, liver transplant, or death within 7 days of treatment, or treatment was discontinued earlier than 7 days, those patients were excluded from participating in the study. Based on the inclusion and exclusion criteria, 24 patients diagnosed with ALF were registered in the study. Patients receiving intravenous NAC as per the established protocol:

- loading dose. To 250 mL of glucose 5%, add 150 mg/kg of acetylcysteine, and then infuse for 30 minutes (500 mL/h);
- maintenance dose. Acetylcysteine is given at a dose of 150 mg/kg, diluted in 1000 mL of 5% glucose, and infused over 24 hours at a rate of approximately 41.6 mL/h. Acetylcysteine is compatible with both 5% glucose and 0.9% sodium chloride; however, 5% glucose is the preferred diluent in patients with liver failure [14].

Data collection

Throughout the course of therapy, clinical and laboratory data were collected at baseline (prior to NAC administration) and at random intervals during the 7 days following enrolment. The collected data included:

- 1. Demographic data: age, gender, and etiology of ALF.
- 2. Clinical features: fever, nausea, vomiting, jaundice, bleeding, hepatomegaly, splenomegaly, and ascites.
- 3. Biochemical and laboratory markers: serum ALT, AST, alkaline phosphatase (ALP), total serum bilirubin, coagulation profile (PT, PTT, and INR), complete blood count, renal function tests, blood culture, viral hepatitis markers (hepatitis A-E), serum ceruloplasmin, 24-hour uri-

Table 1. Grading of pediatric hepatic encephalopathy

Grade of	Neurologica	urological presentation		
encepha- lopathy	Children < 4 years	Children > 4 years		
Stage 1	Increased fussiness, sleep disturbance, easily distracted	Sleep disturbance, mood changes, men- tal fogginess		
Stage 2	Increased fussiness, sleep disturbance, easily distracted	Progressive fatigue		
Stage 3	Somnolence, agitation	Increased fatigue, confusion, speech abnormalities, hyper- reflexia and increased tone		
Stage 4	Overt coma, de- cerebrate or decor- ticate posturing	Overt coma		

nary copper, autoimmune hepatitis panel, and a metabolic panel for inborn errors. These laboratory tests were obtained at baseline and within the first 6 hours of intravenous NAC administration

4. Clinical effectiveness outcomes: presence and grade of hepatic encephalopathy, overall clinical outcome, and length of hospital stay.

To ensure accuracy, normalization of INR was confirmed not to be secondary to blood product administration. For study purposes, the first day on which the INR value fell below the target threshold was considered the time of INR normalization [15].

Early consultation with a liver transplant center was considered for patients meeting the King's College Criteria for non-acetaminophen acute liver failure [16], which include either a PT greater than 100 seconds (approximately INR > 6.5), irrespective of the grade of encephalopathy, or any three of the following five variables:

- a) age < 10 or > 40 years;
- b) etiology: non-A, non-B hepatitis, or idiosyncratic drug reactions;
- c) duration of jaundice before development of encephalopathy > 7 days;
- d) PT greater than 50 seconds (approximately INR > 3.5);
 - e) serum bilirubin > 17.5 mg/dL ($\approx 300 \mu \text{mol/L}$).

Ethical approval

The study was carried out in accordance with the Declaration of Helsinki's ethical guidelines. Before the sample was taken, the patients gave their verbal and analytical consent. A local ethics committee evaluated and approved the consent form, the study protocol, and the subject information (the document number: 4/2024 in May 2024).

Study limitations

This study has several limitations. First, the sample size was relatively small (n = 24), which may limit the generalizability of the findings. Second, the single-center design may restrict external validity. Finally, the observational nature of the study precludes establishing causality, in contrast to randomized controlled trials.

Statistical evaluation

Statistical analyses were performed by using SPSS software version 25.0 (SPSS, Chicago). Continuous data were subjected to normality test (Shapiro-Wilk test). Data with normal distribution were presented as mean and standard deviation (SD) and analyzed with paired-sample t-test. Data with non-normal distribution were presented as median and range and analyzed with Wilcoxon signed-rank test. Categorical variables were expressed as number and percentage and analyzed with chi-square test. A p-value less than 0.05 was considered to indicate a statistically significant difference.

Results

Demographic characteristics of the patients

In this study, 24 pediatric patients with non-acetaminophen-induced ALF treated with NAC were analyzed for

their demographic and clinical characteristics. The mean age was 6.33 ± 4.42 years, with ages ranging from 6 months to 13 years. The sex distribution was equal, with 50 % male and 50 % female patients. The average duration of illness prior to admission was 6.25 ± 3.35 days. Most patients (70.83 %) reside in urban areas, while 29.17 % were from rural regions. The mean length of hospitalization was 7.75 ± 2.51 days, with stays ranging from 2 to 13 days (Table 2).

Clinical characteristics of the patients

Half of the patients (50 %) had stage II liver failure; stage III and stage III—IV were reported in 33.33 and 16.67 % of the patients, respectively. Fever was present in the majority of cases (79.2 %), while vomiting was reported in 66.7 % of pa-

Table 2. Demographic characteristics of pediatric patients with liver failure

Variables	Category	Value
Age, years	Mean ± SD Range	6.33 ± 4.42 0.5–13
Sex, n (%)	Male Female	12 (50) 12 (50)
Disease duration, days	Mean ± SD Range	6.25 ± 3.35 2–14
Residence, n (%)	Urban Rural	17 (70.83) 7 (29.17)
Hospitalization, days	Mean ± SD Range	7.75 ± 2.51 2–13

Table 3. Clinical characteristics of pediatric patients with liver failure

WILLIIVELIANULE			
Variables	Category	Frequency, n (%)	
Stage of liver failure	II III III–IV	12 (50) 8 (33.33) 4 (16.67)	
Fever	Absent Present	5 (20.8) 19 (79.2)	
Vomiting	Absent Present	8 (33.3) 16 (66.7)	
Nausea	Absent Present	15 (62.5) 9 (37.5)	
Jaundice	Absent Present	0 (0) 24 (100)	
Hepatomegaly	Absent Present	0 (0) 24 (100)	
Splenomegaly	Absent Present	18 (75) 6 (25)	
Bleeding	Absent Present	19 (79.2) 5 (20.8)	
Ascites	Absent Present	12 (50) 12 (50)	
Cause of liver failure	Unknown Viral Metabolic and others	8 (33.3) 12 (50) 4 (16.7)	

tients. Nausea was less common, occurring in 37.5 % of the cohort. Notably, present in 100 % of patients. Splenomegaly was observed in 25 % of cases, while bleeding manifestations occurred in 20.8 % of patients. Ascites was found in half of the cases (50 %). Regarding the etiology of liver failure, viral causes were the most frequently identified (50 %), followed by unknown causes (33.3 %) and metabolic and other disorders (drugs, AIH, Wilson disease) (16.7 %) (Table 3).

Effect of NAC treatment on liver function tests

Most laboratory data were non-normally distributed. Accordingly, these data were expressed as median and range. Total serum bilirubin showed a statistically significant decrease from a median of 12.65 mg/dL before treatment to 8.85 mg/dL after treatment (p = 0.005). Similarly, direct bilirubin levels declined significantly from a median of 8.5 to 6.7 mg/dL (p = 0.006). ALT dropped from a median of 926.50 to 469.50 U/L with a highly statistical significance (p < 0.001), while AST also showed a significant reduction from 801.50 to 504.50 U/L. In contrast, ALP levels remained unchanged with a median of 175.50 U/L both before and after treatment. PT improved markedly, decreasing from a median of 21.4 (range: 16.0-107.0) to 15.95 seconds (range: 12.0-60.0), showing enhanced hepatic synthetic function (p < 0.001). PTT, however, remained unchanged with a median of 40 seconds (range: 28.6-101.0) before and after treatment (p = 0.100) as shown in Table 4.

Effect of NAC treatment on hematologic parameters

The INR showed a significant improvement, decreasing from a median of 2.05 (range: 1.60-8.00) before treatment to 1.4 (range: 1.0-5.0) after treatment (p = 0.002). Conversely, serum albumin levels showed a slight increase from a median of 32.0 (range: 18.0-41.8) to 33.0 g/dL (range: 20.0-41.8), with no significant difference.

White blood cell counts decreased from a median of $17.31 \times 10^9/L$ before treatment to $9.27 \times 10^9/L$ after treatment; however, this reduction did not reach statistical signi-

Table 4. Effect of NAC treatment on liver function tests

Variables	Before treatment	After treatment	p-value
TSB, mg/dL Median	12.65	8.85	0.005
Range	3.0–23.7	2.8–22.7	
Direct SB, mg/dL Median Range	8.5 1.5–20.1	6.7 1–16.9	0.006
ALT, U/L Median Range	926.50 117–3944	469.50 104–1555	< 0.001
AST, U/L Median Range	801.50 23–3819	504.50 23–5700	0.007
ALP, U/L Median Range	175.50 111–699	175.50 111–699	0.655

ficance (p = 0.268). Hemoglobin levels remained relatively stable, with a median of 11.1 g/dL before NAC and 10.7 g/dL after treatment (p = 0.884). Platelet counts (PLT) also declined from a median of 157.0 \times 10⁹/L (range: 60–380) to 81.0 \times 10⁹/L (range: 36–206), although the change was not statistically significant (p = 0.401) as indicated in Table 5.

Outcome

More than two-thirds of the patients (70.83 %) survived. However, 5 patients (20.83 %) died, and 2 patients (8.33 %) was discharged as shown in Fig. 1.

Table 5. Effect of NAC treatment on hematologic parameters

Variables	Before treatment	After treatment	p-value
PT, sec Median Range	21.4 16.0–107.0	15.95 12–60	< 0.001
PTT, sec Median Range	40 28.6–101.0	40 28.6–101.0	0.100
INR Median Range	2.05 1.60–8.00	1.4 1.0–5.0	0.002
Albumin, g/dL Median Range	32.0 18.0–41.8	33.0 20–41.8	0.180
WBC, × 10°/L Median Range	17.31 3.50–23.60	9.27 3.20–14.30	0.268
Hb, g/dL Median Range	11.1 8.7–14.8	10.7 10.48–13.30	0.884
PLT, × 10°/L Median Range	157.0 60–380	81.0 36–206	0.401

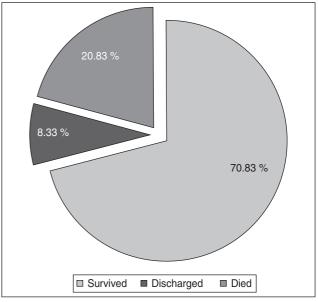


Figure 1. Outcome of pediatric patients with ALF treated with NAC

Therapeutic efficacy of NAC

According to clinical and biochemical outcomes, 15 patients (62.5 %) benefited from NAC treatment, while 9 patients (37.5 %) did not (Fig. 2).

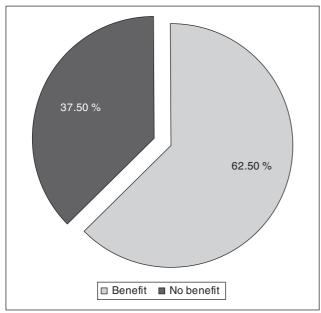


Figure 2. Distribution of patients according to their benefit from NAC

Association of demographic characteristics, stage of liver failure and cause of liver failure with therapeutic efficacy of NAC

The only demographic characteristics which had a significant association with NAC treatment was disease duration. Patients who benefited had a shorter mean disease duration of 4.93 ± 1.79 days, compared to 8.44 ± 4.25 days in the non-benefit group (p = 0.010). Other factors were comparable between the two groups with no significant difference (Table 6). The etiology of liver failure also influenced treatment response. Among those who benefited, 73.33 % had a viral cause, while 55.56 % of non-responders had an unknown etiology and 33.33 % had metabolic causes (p = 0.012).

Association of clinical characteristics with therapeutic efficacy of NAC

A highly significant association was observed between the stage of liver failure and treatment response. Among those who benefited from NAC, 80% were in stage II, while none had more advanced disease stages (III or IV). In contrast, all patients in the non-benefit group had stage III (55.56%) or stage III–IV (44.4%), with no cases in stage II, indicating that earlier stages of liver failure are more likely to respond favorably to NAC. Bleeding manifestations, however, were significantly associated with better outcomes (66.67% in benefit group vs. 55.56% in non-benefit, p=0.003), though this may reflect closer clinical monitoring and supportive interventions. A striking difference was observed in the presence of ascites, which was present in 100% of the non-benefit group but only 20% of the benefit group (p<0.001) (Table 7).

Association of baseline liver function tests with therapeutic efficacy of NAC

The TSB levels were significantly lower in patients who responded to NAC therapy (median 10.5 mg/dL, range 4-15.5) compared to those who did not (median 16.4 mg/dL, range 3.0-28), with a p-value of 0.021. Direct bilirubin levels also showed a trend toward being lower in the benefit group (median 7.9 mg/dL, range 1.5-13.8) versus the nonbenefit group (median 15.7 mg/dL, range 2.8-20.1), but the difference did not reach statistical significance (p = 0.064). Non-responsive group had significantly higher median levels ALT (993 vs. 720 U/L, p = 0.038), and AST (938 vs. 450 U/L, p = 0.044) compared to those who did benefit. The levels of liver enzymes such as ALT, AST and ALP were not significantly different between the two groups (Table 8).

Table 6. Association of demographic characteristics, and cause of liver failure with therapeutic efficacy of NAC

5. NAO			
Variables	No benefit (n = 9)	Benefit (n = 15)	p-value
Age, years Mean ± SD Range	5.58 ± 3.76 1.33–13	7.33 ± 4.21 0.5–13	0.129
Sex, n (%) Male Female	4 (44.44) 5 (55.56)	8 (53.33) 7 (46.67)	0.673
Disease duration, days Mean ± SD Range	8.44 ± 4.25 2.0–14.0	4.93 ± 1.79 3.0–8.0	0.010
Residence, n (%) Urban Rural	7 (77.78) 2 (22.22)	10 (66.67) 5 (33.33)	0.562
Hospitalization, days Mean ± SD Range	6.89 ± 3.72 2.0–13	8.27 ± 1.28 6.0–10	0.199
Cause of liver failure, n (%) Unknown Viral Metabolic and others	5 (55.56) 1 (11.11) 3 (33.33)	3 (20) 11 (73.33) 2 (13.33)	0.012

Table 7. Association of clinical characteristics with therapeutic efficacy of NAC, n (%)

Variables	No benefit (n = 9)	Benefit (n = 15)	p-value
Stage of liver failure	0 (0) 5 (55.56) 4 (44.4)	12 (80) 3 (20) 0 (0)	< 0.001
Fever	5 (55.56)	14 (93.33)	0.047
Nausea	1 (11.11)	8 (53.33)	0.039
Bleeding	5 (55.56)	10 (66.67)	0.003
Ascites	9 (100)	3 (20)	< 0.001

Association of baseline hematologic parameters with therapeutic efficacy of NAC

The median PT in the benefit group was 19 seconds compared to 40 seconds in the no benefit group, with a highly significant difference (p < 0.001). Similarly, PTT was significantly longer in the no benefit group (median 60 seconds) versus the benefit group (median 38 seconds) (p = 0.002). The INR was also higher in the no benefit group (median 3.4) compared to the benefit group (median 1.8), with a p < 0.001. Albumin levels were notably lower in the no benefit group (median 21 g/dL) compared to the benefit group (median 32 g/dL), with a statistically significant difference (p = 0.005). Hemoglobin levels were also slightly lower in the no benefit group (median 10.8 g/dL) compared to the benefit group (median 12.8 g/dL), with a p-value of 0.048. Other laboratory markers, including urea, creatinine, WBC, neutrophils, lymphocytes, and platelet count, did not show statistically significant differences between groups (Table 9).

Discussion

Pediatric non-acetaminophen ALF remains clinically challenging. The findings of this research provide important new perspectives on the therapeutic effectiveness of NAC in patients with ALF.

The age range in our study was 6 months to 13 years. In comparison, the Pediatric Acute Liver Failure (PALF) study trial (n = 184) reported median ages of 3.7 years (IQR 0.8–10.5) in the NAC arm, which reflects a similar pediatric age distribution [17].

In our study, the mean time to admission was 6.25 ± 3.35 days (median: 3 days). The mean length of hospital stay was 7.75 ± 2.51 days (range 2–13 days). In comparison, a 2022 meta-analysis reported that NAC was associated with significantly shorter hospital stays, while the median pre-admission disease duration across pooled studies was approximately 3 days [18].

Regarding severity and physical findings, our study showed that fever was present in 79.2 %, and ascites in 50 %, consistent with common ALF presentations. Universal

Table 8. Association of baseline liver function tests with therapeutic efficacy of NAC

Variables	No benefit (n = 9)	Benefit (n = 15)	p-value
TSB, mg/dL Median Range	16.4 3.0–2.8	10.5 4–15.5	0.021
Direct SB, mg/dL Median Range	15.7 2.8–20.1	7.9 1.5–13.8	0.064
ALT, U/L Median Range	993 334–3150	720 117–3499	0.038
AST, U/L Median Range	938 160–3819	450 23–2797	0.044
ALP, U/L Median Range	181 150–699	170 111–549	0.144

hepatomegaly and jaundice further suggest more severe or fulminant disease. Bleeding manifestations were observed in 21 %, which is lower than the 40 % reported in pediatric ALF overall but higher than the 11 % typically seen in hepatitis A cohorts, suggesting a moderate degree of coagulopathy. Overall, our findings align broadly with pediatric ALF profiles, particularly with respect to jaundice, hepatomegaly, and ascites [19].

A 50 % viral etiology rate in our cohort is consistent with both global and regional ALF data. The 33 % unknown etiology rate is typical in settings without access to advanced diagnostic panels (e.g., adenovirus, HSV, parvovirus) and mirrors the experience of many tertiary centers, where cryptogenic cases remain common. Comparative findings from a pediatric ALF cohort in India [20] reported infections in 29.5 % and metabolic disorders as a minority. In adult cohorts, etiologies differ, with HAV (25 %), HBV (18.7 %), drug induced liver injury (DILI) (12.7 %), AIH (12.5 %), and HEV (9.3 %) reported.

In our study, hepatic encephalopathy grades were evenly split between moderate (stage II) and severe (stages III–IV),

Table 9. Association of baseline hematologic parameters with therapeutic efficacy of NAC

Variables	No benefit (n = 9)	Benefit (n = 15)	p-value
PT, sec			
Median	40	19	< 0.001
Range	21–107	16–25	
PTT, sec			
Median	60	38	0.002
Range	34–101.0	28.6–49	
INR			
Median	3.4	1.8	< 0.001
Range	2.10–8	1.6–3.0	
Albumin, g/dL			
Median	21	32	0.005
Range	18.0–35.0	25–41.8	
WBC, × 109/L	6.8		
Medián	3.50-	8.7	0.519
Range	20.20	3.80-23.60	
Neutrophils,			
× 10°/L			0.155
Median	51	65	0.155
Range	13–81	23.60–70.70	
Lymphocytes			
Median	38.5	29	0.519
Range	0.49–70	17.60–62.20	
Hb, g/dL			
Median	10.8	12.8	0.048
Range	8.7–13.3	8.9–14.8	
PLT, × 109/L			
Median	108	206	0.174
Range	64–380	60–285	
Urea, mg/dL			
Median	3.5	2.3	0.155
Range	0.9–20.0	1.08–10.1	
Creatinine			
Median	45.0	51.0	0.558
Range	5.2–140	15.1–70	

a distribution consistent with both pediatric and adult ALF studies. For example, Squires et al. reported stage I–II in 41 % and stage III–IV in 59 % of cases [17], while the PALF Study Group found an even 50 % distribution [21]. Similarly, in adults, Wang et al. observed stage I–II in 49.5 % and stage III–IV in 50.5 % [22]. These parallels strengthen the interpretation that our cohort represents true acute liver failure, rather than severe hepatitis alone.

NAC appears to accelerate liver injury recovery and promote bilirubin clearance, particularly when administered early in the disease course. In our study, NAC use was associated with statistically significant reductions in TSB, ALT, and AST. These findings are consistent with a pediatric viral ALF (hepatitis A) study, in which NAC administration resulted in marked decreases in AST, ALT, and both total and direct bilirubin (all p < 0.05) [7]. Similarly, in a randomized controlled trial by Lee et al. involving 173 patients with nonacetaminophen ALF, NAC significantly improved bilirubin and ALT levels in early-stage disease (coma grade I–II), although AST did not change [23].

The observed improvements in coagulation parameters in our study further underscore the potential importance of NAC in ALF. Coagulation profile is a crucial metric in evaluating liver function in these patients, and our results suggest that NAC may contribute to improved hemostatic recovery. However, its benefits are likely influenced by both the severity and underlying etiology of liver failure. Multiple RCTs and cohort studies have reported that NAC accelerates the resolution of coagulopathy and shortens hospital stay, though explicit INR values are not consistently documented [18]. In the study by Darweesh et al. [24], the use of INR normalization as a treatment milestone was emphasized as a key outcome measure.

In our study, 15 patients (62.5 %) responded to NAC, while 9 patients (37.5 %) did not supporting the potential role of NAC even in non-acetaminophen-related ALF. This aligns with Walayat et al. [17], who reported that NAC significantly improved both overall survival and transplant-free survival, and with a meta-analysis by Amjad et al. [18], which showed significantly higher transplant-free survival across five prospective trials. Conversely, Orban et al. [25] found no significant reduction in overall mortality, transplant-free survival, or length of hospital stay with NAC, underscoring the variability in reported outcomes.

Interestingly, in our cohort, the presence of bleeding manifestations was significantly associated with a favorable response to NAC. While this may appear counterintuitive given the underlying coagulopathy in ALF, it suggests that NAC is not only safe but may confer added benefit in bleeding-complicated liver failure. This is consistent with findings from Stravitz et al. [26], who demonstrated that NAC did not increase the incidence of bleeding in ALF patients, supporting its safety profile even in coagulopathic settings. Furthermore, Pham et al. [27] reported that NAC use in cirrhotic patients with variceal bleeding significantly reduced the incidence of ischemic hepatitis and acute kidney injury; effects likely mediated through improved hepatic perfusion and enhanced antioxidant defense.

In our study, bilirubin elevations independently predicted transplantation or death during the early course of ALF, particularly in patients with grade I–II encephalopathy,

highlighting its prognostic value. Responders had significantly lower total bilirubin levels compared to non-responders (10.5 vs. 16.4 mg/dL; p=0.021), with a similar trend for direct bilirubin (p=0.064). Conversely, non-responders demonstrated higher ALT (993 vs. 720 U/L; p=0.038) and AST (938 vs. 450 U/L; p=0.044). These findings are consistent with Ryan M. Taylor et al. [28], who reported that in non-acetaminophen ALF patients with coma grade I–II, NAC was associated with early improvements in bilirubin and ALT parameters predictive of transplant-free survival.

Our results reinforce prior observations that better baseline liver function tests, lower bilirubin, milder coagulopathy, and preserved albumin are predictive of NAC responsiveness. This is in line with meta-analyses showing that NAC improves both transplant-free and post-transplant survival in non-acetaminophen ALF [29]. In our cohort, non-responders had significantly worse coagulation parameters (PT 40 vs. 19 sec; INR 3.4 vs. 1.8; PTT 60 vs. 38 sec; p < 0.001–0.002), confirming that severe baseline coagulopathy predicts reduced NAC efficacy. Admission INR was strongly associated with the risk of transplant or death in NAC-treated ALF, especially in coma grades I–II, while a decline in INR was a hallmark of treatment response [23].

Responders also demonstrated superior synthetic function, with higher albumin (32 vs. 21 g/L; p = 0.005) and hemoglobin (12.8 vs. 10.8 g/dL; p = 0.048). Although most NAC trials in ALF do not explicitly evaluate albumin or hemoglobin, impaired synthetic function is inherently linked to worse outcomes [30].

Beyond hepatic recovery, the observed benefits of NAC in pediatric ALF may extend to neurological protection. By reducing oxidative stress, NAC may mitigate the cerebral vulnerability seen in metabolic diseases, a paradigm that likely applies to children with ALF, where inflammatory cytokines, hyperammonemia, and oxidative stress adversely affect brain function [31, 32]. Moreover, systemic stressors in vulnerable populations — such as pediatric patients and pregnant women — warrant careful assessment due to heightened physiological demands and risks [33]. Our prospective findings contribute to this growing body of evidence by underscoring the importance of early metabolic modulation with NAC in critically ill children.

Conclusions

This study shows that NAC may be useful as a treatment for acute liver failure in children, especially by increasing albumin production, improving liver biomarkers, and lowering coagulation abnormalities. Future research should concentrate on patient stratification by ALF etiology, the identification of predictive biomarkers for NAC responsiveness, and an evaluation of its long-term effects on survival and liver regeneration, although this is still up for debate.

References

- 1. Aziz R, Price J, Agarwal B. Management of acute liver failure in intensive care. BJA education. 2021 Mar 1;21(3):110-6. doi: 10.1016/j. bjae.2020.11.006.
- 2. Lekakis V, Papatheodoridis GV. Natural history of metabolic dysfunction-associated steatotic liver disease. European Journal of Internal Medicine. 2024 Apr 1;122:3-10. doi: 10.1016/j.ejim.2023.11.005.

- 3. Gan C, Yuan Y, Shen H, Gao J, Kong X, et al. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduction and Targeted Therapy. 2025 Feb 5;10(1):33. doi: 10.1038/s41392-024-02072-z.
- 4. Sehrawat SS, Premkumar M. Critical care management of acute liver failure. Indian Journal of Gastroenterology. 2024 Apr;43(2):361-76. doi: 10.1007/s12664-024-01556-8.
- 5. Schwalfenberg GK. N-acetylcysteine: a review of clinical usefulness (an old drug with new tricks). Journal of Nutrition and Metabolism. 2021;2021(1):9949453. doi: 10.1155/2021/9949453.
- 6. Devarbhavi H, Aithal G, Treeprasertsuk S, Takikawa H, Mao Y, et al. Drug-induced liver injury: Asia Pacific Association of Study of Liver consensus guidelines. Hepatology International. 2021 Apr; 15:258-82. doi: 10.1007/s12072-021-10144-3.
- 7. Sotelo N, de los Ángeles Durazo M, Gonzalez A, Dhanakotti N. Early treatment with N-acetylcysteine in children with acute liver failure secondary to hepatitis A. Annals of Hepatology. 2009;8(4):353-8.
- 8. Minjares RO, Martin P, Bhamidimarri KR. Jaundice and Abnormal Liver Function Tests. In: Textbook of Neurointensive Care. Vol. 1: Neuroanatomy, Diagnostic Assessment, Disease Management. Cham: Springer International Publishing; 2024. 267-285.
- 9. Sanabria-Cabrera J, Tabbai S, Niu H, Alvarez-Alvarez I, Licata A, et al. N-acetylcysteine for the management of non-acetaminophen drug-induced liver injury in adults: A systematic review. Frontiers in Pharmacology. 2022 May 17;13:876868. doi: 10.3389/fphar.2022.876868.
- 10. Lee WM, Hynan LS, Rossaro L, Fontana RJ, Stravitz RT, et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology. 2009 Sep 1;137(3):856-64. doi: 10.1053/j.gastro.2009.06.006.
- 11. Wendon J, Cordoba J, Dhawan A, Larsen FS, Manns M, et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. Journal of Hepatology. 2017 May 1;66(5):1047-81.doi: 10.1016/j.jhep.2016.12.003.
- 12. Squires Jr RH, Shneider BL, Bucuvalas J, Alonso E, Sokol RJ, et al. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. The Journal of Pediatrics. 2006 May 1;148(5):652-8. doi: 10.1016/j.jpeds.2005.12.051.
- 13. Bartlett JA, Kohli R. Hepatic encephalopathy in children. Indian Journal of Pediatrics. 2024 Mar;91(3):280-5. doi: 10.1007/s12098-023-04679-6.
- 14. Naughtin C, Anderson C. Acetylcysteine IV in non-paracetamol induced acute liver failure. Medicine Guideline. 2023;1-4.
- 15. Bass SN, Lumpkin M, Mireles-Cabodevila E, Lindenmeyer CC, Dolan B, et al. Impact of Duration of N-Acetylcysteine in Non-Acetaminophen-Induced Acute Liver Failure. Critical Care Explorations. 2021 May 1;3(5):e0411. doi: 10.1097/CCE.000000000000011.
- 16. Da Silva Athanasio B, de Faria Andrade AM, Vasconcelos Costa V, Castro JF, et al. King's College criteria and the Clichy-Villejuif criteria require adjustments for assessing acute liver failure due to yellow fever. World J Transplant. 2025 Mar 18;15(1):100413. doi: 10.5500/wjt.v15.i1.100413.
- 17. Walayat S, Shoaib H, Asghar M, Kim M, Dhillon S. Role of N-acetylcysteine in non-acetaminophen-related acute liver failure: an updated meta-analysis and systematic review. Annals of Gastroenterology. 2021 Jan 4;34(2):235. doi: 10.20524/aog.2021.0571.
- 18. Amjad W, Thuluvath P, Mansoor M, Dutta A, Ali F, Qureshi W. N-acetylcysteine in non-acetaminophen-induced acute liver failure: a systematic review and meta-analysis of prospective studies. Gastroenterology Review/Przegląd Gastroenterologiczny. 2022;17(1):9-16. doi: 10.5114/pg.2021.107797.
- 19. Abimannane A, Deepthi B, Bhowmick R, Parameswaran N. Clinical Profile and Outcomes of Children with Acute Liver Failure in a Tertiary Care Center in South India: A Retrospective Study. Pediatric

- Gastroenterology, Hepatology & Nutrition. 2024 Jan 9;27(1):43. doi: 10.5223/pghn.2024.27.1.43.
- 20. Seth S, Maharshi S, Sharma KK, Pokharna R, Nijhawan S, Sharma SS. Changing etiological spectrum of acute liver failure. Indian Journal of Gastroenterology. 2024 Apr;43(2):452-8. doi: 10.1007/s12664-024-01578-2.
- 21. Toney NA, Bell MJ, Belle SH, Hardison RM, Rodriguez-Baez N, et al. Pediatric Acute Liver Failure Study Group. Hepatic encephalopathy in children with acute liver failure: utility of serum neuromarkers. Journal of Pediatric Gastroenterology and Nutrition. 2019 Jul 1;69(1):108-15. doi: 10.1097/MPG.00000000000002351.
- 22. Wang CY, Zhao P, Liu WW. Acute Liver Failure Study Team. Acute liver failure caused by severe acute hepatitis B: a case series from a multi-center investigation. Annals of Clinical Microbiology and Antimicrobials. 2014 Dec; 13:1-4. doi: 10.1186/1476-0711-13-23.
- 23. Singh S, Hynan LS, Lee WM. Acute Liver Failure Study Group. Improvements in hepatic serological biomarkers are associated with clinical benefit of intravenous N-acetylcysteine in early stage non-acetaminophen acute liver failure. Digestive diseases and sciences. 2013 May;58:1397-402. doi: 10.1007/s10620-012-2512-x.
- 24. Darweesh SK, Ibrahim MF, El-Tahawy MA. Effect of N-acetylcysteine on mortality and liver transplantation rate in non-acetaminophen-induced acute liver failure: a multicenter study. Clinical Drug Investigation. 2017 May;37:473-82. doi: 10.1007/s40261-017-0505-4.
- 25. Orban C, Agapie M, Bratu A, Jafal M, Duţu M, Popescu M. No Significant Beneficial Effects of Intravenous N-Acetylcysteine on Patient Outcome in Non-Paracetamol Acute Liver Failure: A Meta-Analysis of Randomized Controlled Trials. Biomedicines. 2024 Jul 1;12(7):1462. doi: 10.3390/biomedicines12071462.
- 26. Stravitz RT, Ellerbe C, Durkalski V, Schilsky M, Fontana RJ, et al. Acute Liver Failure Study Group. Bleeding complications in acute liver failure. Hepatology. 2018 May;67(5):1931-1942. doi: 10.1002/hep.29694.
- 27. Maiwall R, Kumar A, Bhadoria AS, Jindal A, Kumar G, et al. Utility of N-acetylcysteine in ischemic hepatitis in cirrhotics with acute variceal bleed: a randomized controlled trial. Hepatology International. 2020 Jul; 14:577-86. doi: 10.1007/s12072-020-10013-5.
- 28. Taylor RM, Tujios S, Jinjuvadia K, Davern T, Shaikh OS, et al. Short and long-term outcomes in patients with acute liver failure due to ischemic hepatitis. Digestive Diseases and Sciences. 2012 Mar;57:777-85. doi: 10.1007/s10620-011-1918-1.
- 29. Jiang SX, Hussaini T, Yoshida EM. N-acetylcysteine for non-acetaminophen induced acute liver failure: A review. Saudi Journal of Gastroenterology. 2022 Mar 1;28(2):85-91. doi: 10.4103/sjg.sjg_406_21.
- 30. Jawaid H, Ali MM, Khan MU, Sami S, Shaikh MA. Efficacy and safety of N-acetylcysteine for the treatment of non-acetaminophen-induced acute liver failure: An updated systematic review and meta-analysis. Clinical and Experimental Hepatology. 2021 Jun 30;7(2):156-64. doi: 10.5114/ceh.2021.107171.
- 31. Ibrahim BA, Hussein SA, Abdullah WH. Cognitive functions in children with type I diabetes. Wiad Lek. 2023 Jan 1;76(5 pt 1):944-50. doi: 10.36740/wlek202305108.
- 32. Abdullah WH, Alabedi RF. Moyamoya angiopathy with growth hormone deficiency in 13 years and 10 years old boys brothers in Iraq: A case report. Medical Journal of Babylon. 2022 Jul 1;19(3):503-6. doi: 10.4103/MJBL.MJBL_90_22.
- 33. Al-Obaidi SR, al-Gburi AJ. Pregnancy outcomes among patients with inappropriate sinus tachycardia. Malta Medical Journal. 2025;37(1):63-70.

Received 25.09.2025 Revised 28.10.2025 Accepted 10.11.2025

Information about author

Dr. Mushriq Abdullah Hussein, Mustansiriyah University, Baqhdad, Iraq; e-mail: mushriq.abdullah@uomustansiriyah.edu.iq

Conflicts of interests. Author declares the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Mushriq Abdullah Hussein Mustansiriyah University, Baghdad, Iraq

Терапія N-ацетилцистеїном при гострій печінковій недостатності, не спричиненій ацетамінофеном, у дітей: одноцентрове дослідження

Резюме. Актуальність. Гостре порушення функції печінки призводить до небезпечного для життя стану, відомого як гостра печінкова недостатність (ГПН). Хоча N-ацетилцистеїн (NAC) широко використовується при ацетамінофен-індукованій ГПН, його роль у ГПН, не спричиненій ацетамінофеном, залишається дискусійною. Мета: оцінити ефективність NAC у пацієнтів із ГПН, не викликаною ацетамінофеном, з акцентом на біохімічні показники, спонтанне відновлення функції печінки й загальну смертність. Матеріали та методи. Двадцять чотири пацієнти віком від 6 місяців до 13 років із діагнозом ГПН були відібрані для цього проспективного обсерваційного дослідження, проведеного протягом 6 місяців (з 1 червня до 1 грудня 2024 року) у Центральній дитячій навчальній лікарні міста Багдад. Усі вони отримували NAC під час госпіталізації. Були оцінені клінічні характеристики, показники функції печінки, коагулограми, а також клінічна ефективність, результати лікування, тривалість перебування в стаціонарі й рівень виживання. Результати. Вік пацієнтів становив від 6 місяців до 13 років. Розподіл за статтю був рівним: 12 (50 %) хлопчиків та 12 (50 %) дівчаток. Середня тривалість хвороби до госпіталізації становила 6,25 ± 3,35 дня, а середня тривалість перебування в стаціонарі — $7,75 \pm 2,51$ дня. Половина учасників (50 %) мали ІІ стадію печінкової недостатності, ІІІ та ІІІ-ІV стадії зареєстровані відповідно у 33,33 і 16,67 % пацієнтів, жовтяниця й гепатомегалія були універсальними знахідками. Щодо етіології печінкової недостатності, вірусні причини були найпоширенішими (50 %), далі йшли випадки з невідомою причиною (33,3 %), тоді як метаболічні та інші розлади (ліки, автоімунний гепатит, хвороба Вільсона) становили 16,7 %. Рівень загального білірубіну сироватки крові зменшився статистично вірогідно — з медіани 12,65 мг/дл до лікування до 8,85 мг/дл після лікування. Уміст аланінамінотрансферази знизився з медіани 926,50 до 469,50 Од/л з високою статистичною значущістю, аспартатамінотрансфераза також продемонструвала значне зниження з 801,50 до 504,50 Од/л. Міжнародне нормалізоване співвідношення істотно поліпшилося: 2,05 до лікування й 1,4 після нього. Висновки. Це дослідження показує, що NAC може бути корисним у лікуванні гострої печінкової недостатності в дітей, особливо завдяки покращенню функції печінки та зменшенню коагулопатій. Майбутні дослідження повинні зосередитися на стратифікації пацієнтів за етіологією ГПН, виявленні прогностичних біомаркерів відповіді на NAC та оцінці його довгострокового впливу на виживання й регенерацію печінки, хоча це питання залишається предметом дискусій. Ключові слова: N-ацетилцистеїн; гостра печінкова недостатність; показники виживання; недостатність, не виклика-

на ацетамінофеном

Огляд літератури / Review of Literature

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1925

J. Zyberaj, E. Ikonomi University "Ismail Qemali" of Vlora, Faculty of Human Sciences, Vlora, Albania

Children's rights in medical decision-making: a review of ECtHR principles

Abstract. Autonomy in medical decision-making involves an individual's ability to decide which medical procedure is suitable for them or to refuse treatment. Parents are regarded as the primary decision-makers for their children's health decisions. When parents do not act in the child's best interest, disagreements between parents and healthcare providers over the child's medical treatment typically require resolution by the court. In this process, the minor should be considered an active participant in their care. Therefore, the minor's decision-making capacity becomes essential, and depending on their age, they can give or withhold consent to treatment, which may conflict with their parents' decisions or what is deemed to be in their best interest. Medical consent ensures that the rights and the best interests of minors are always protected. The state must guarantee the best interest of the child even when the parents who are entitled to do so may jeopardize the welfare of the child. By reviewing some of the most important case laws of the ECtHR, the paper aims to examine the role of different actors in the medical decision-making of minors and the resolution of disputes that may arise from other considerations of parents and health providers.

Keywords: minors; medical consent; autonomy; best interest of the child; review of the ECtHR case law

Introduction

The legal concept of consent implies permission for something to happen or the agreement to do something [1]. It is considered the act of voluntarily giving permission to a specific action. On the other hand, there is autonomy, usually understood as self-determination and the ability to make autonomous decisions. According to Kant, autonomy is the capacity for rational self-governance, rather than the ability to do whatever one desires [2]. But as soon as any part of a person's conduct affects prejudicially the interest of others, society has jurisdiction over it, and the use of autonomy should not interfere with the values that should be promoted in society. There are two approaches to what autonomy should be considered. According to the liberal model, autonomy is considered an individualistic right predicated on self-sufficient individuals. The liberal self is an autonomous, rational individual who chooses relationship and obligations through the instrument of private property and contract. On the other hand, relational theorists argue that autonomy becomes possible through social interactions, such as those with parents, teachers, friends, and state agents [3]. The rational version allows the principle of autonomy to be readily coordinated with

other moral principles governing the self, acting within a social context. This requires that autonomous choices must be made in response to obligations, duties, and responsibilities. The right of autonomy is considered a negative right, meaning that it protects an individual's right to live free from interference. Still, it is not an affirmative right in the sense that the individual may always exercise that right. The autonomy of people to make decisions, while taking responsibility for those decisions and respecting the autonomy of others, is to be respected [4, 5].

Autonomy should not be considered extremely private, because the person exercising autonomy should be aware of the importance of the decision and the benefits they derive from exercising autonomy [6]. Each person is their own arbiter of what is good and what is bad. This analysis of the understanding of the benefits that should come from exercising autonomy connects autonomy to consent.

Consent is based on the presence of three conditions: an intentional manifestation of consent, the ability to understand, and the capacity for volition. The manifestation of consent should be intentional and deliberate [7]. Knowledge requires both understanding and information about the action that is to be taken. Volition is considered an in-

For correspondence: Jonada Zyberaj, Dr., Head of Civil Law Section, Department of Law, University "Ismail Qemali", Vlore of Vlora, Rr. Skele 9400, Vlore, Albania; e-mail: jonada.zyberaj@gmail.com, phone: +355693381966

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

tended and controlled manifestation of an act and an intended desire to reach the consequences of the act. These three elements of consent indicate that consent is closely related to the ability to act as an opportunity to understand and exercise rights and obligations [8].

The consent should be informed. Informed consent means that the person should have sufficient information and understanding of the issue before making a decision and giving their consent before acceptance [9]. Informed consent implies that the person must develop an intellectual and volitional connection to understand, through the information received, the consequences of their expressed will and, through the volitional moment, declare their will for its realization. Informed consent requires that the person giving consent have the ability to understand the consequences of the will they express, and that the expressed will be made precisely with the intention of bringing about these consequences. This criterion requires that the person expressing their will must have full capacity to act [10].

Informed consent is considered a fundamental principle in many disciplines. In medical ethics, the application of this principle ensures that patients have the right to make an autonomous decision about their healthcare after being fully informed about the medical procedure, its benefits, risks, and other alternative procedures [11].

The principle of informed consent in medical procedures is provided in several international legal and ethical documents.

The Oviedo Convention on Human Rights and Biomedicine (1997) is known as the Oviedo Convention. This was the first internationally binding document that formalized the rule that medical intervention cannot be carried out on a person without their prior consent.

The Universal Declaration of Bioethics and Human Rights (2005) stipulates that medical interventions must only be carried out with the prior, free, and informed consent of the person concerned.

The International Covenant on Civil and Political Rights (1966) of the UN reinforces the principle of informed consent in cases of medical interventions [12].

The Nuremberg Code, the earliest formalized ethical guideline, also emphasizes the need for informed consent. The Belmont Report and the Declaration of Helsinki both emphasize the principle of informed consent as a prerequisite for medical intervention [13–15].

All of the aforementioned international documents proclaim the autonomy of the individual in all medical health procedures. A principle, which has been further elaborated by the European Court of Human Rights (ECtHR) in the light of the right to respect private life and the right to personal integrity.

As an expression of the right to autonomy, informed consent should be expressed by people who are considered by law to be legally capable of giving a valid consent. But for various reasons, a person may be incapable of acting (consent) or, due to circumstances, may be unable to express their will. In such cases, it is crucial to establish adequate legal mechanisms to ensure that their protection is considered when medical intervention is deemed a viable treatment option [16]. The article aims to review the legal mechanisms

provided by law in cases where medical procedures need to be applied to individuals who, due to their age, are considered incompetent to act.

Research methodology

This study offers a critical narrative review of the legal principles concerning children's rights in medical decision-making, within the context of the European Convention on Human Rights (ECHR) and the jurisdiction of ECtHR. It integrates doctrinal analysis with a targeted review of secondary sources in law, bioethics, and medical ethics. Searches were conducted across various online databases, including HeinOnline, Scopus, Web of Science, PubMed, and the HUDOC database, to access key ECtHR judgments such as Glass v. United Kingdom, Gard v. United Kingdom, Afiri and Biddarri v. France, Lambert v. France, and Pindo Mulla v. Spain.

The inclusion criteria were peer-reviewed scholarship published between 2000 and 2024, ECtHR jurisprudence, and relevant international instruments such as the UN Convention on the Rights of the Child and the European Convention on Human Rights. The findings were thematically synthesized, highlighting structural tensions among parental authority, medical expertise, and the child's best interests, and critically assessed against normative human rights standards.

Medical decision-making of minors

For informed consent to be valid, it must be based on an intentionally expressed free will, a capacity reserved for individuals who are considered legally competent to act. The legal capacity to act refers to the ability to hold rights and to act as a legal entity under the law. The legal capacity is entitled as "a person to full protection of his or her rights by the legal system" and "as an agent with the power to engage in transactions and in general to create, modify or end legal relationships" [9]. Individuals with legal capacity are also deemed competent to consent to their own medical treatment. Because of severe mental issues or because of their minor age, some people are considered by law as incompetent to act. A person may be incapable of consent not only due to legal incompetence but also in other circumstances when they are unable to express their will. Legal incompetence refers to individuals who, due to their age, are considered legally incapable of acting, or because of severe mental health issues, are judicially regarded as incapable of acting.

Due to their age, minors are considered by law to be incompetent to act on their own behalf. Thus, they cannot freely and autonomously perform their rights and obligations. A minor is an individual who is under the age of majority, which is defined by national laws. In many countries, the general age of majority is eighteen years; however, different countries recognize that children of an early age can take autonomous actions in various legal areas [17]. The definition of the child is given by the Convention on the Rights of the Child (hereinafter "the CRC Convention"). According to its definition, "a child means every human being below the age of eighteen years unless under the law applicable to the child, majority is attained earlier" [18]. The

CRC Convention is considered the "bible" in the context of the promotion of the rights of the child, including the right to health and development. Children have the right to the enjoyment of the highest attainable standard of health and to facilities for the treatment of illness and rehabilitation of health. State parties have the obligation to strive to ensure that no child is deprived of the right to access to health care services and to achieve the full realization of the right to enjoy the highest attainable standard of health [19]. Member states should guarantee access of children to health care services by respecting the general principles on the right of the child to be heard and the best interest of the child (Articles 2 and 3 of the CRC). Despite the protection and proclamation that the convention grants to the right to health for children, it generally defines that all actors, dealing with children, are obliged to ensure the best interest of the child in every decision-making process, but it does not go into detail on how this right should be implemented, leaving this determination to the domestic legislation of member states.

The Oviedo Convention, through its provisions on the protection of human rights and human dignity when applying medical techniques, provides a more detailed framework for exercising the right to health for children in the context of medical practices. Once a person is deemed incapable of giving consent, specific conditions must be established to ensure their protection if medical intervention is considered as a treatment option.

These conditions are outlined in Article 6 of the Oviedo Convention, which stipulates that medical intervention on minors should only occur for their direct benefit and only with the authorization of a legal representative, an authority, or another designated person. The same criteria are also provided by Article 7 of the Universal Declaration of Bioethics and Human Rights. Therefore, under certain circumstances, the opinion of a minor, when it is taken in proportion with their age and the degree of their maturity, may be seen as a necessary and sufficient condition for carrying out a medical intervention [20]. It is for member states to provide the entitlement of people formally not yet reaching the age of majority to consent substantively to provide medical intervention. The Convention provides that in cases of an emergency situation, when obtaining the appropriate consent is not possible, any medically necessary intervention may be carried out immediately for the benefit of the individual concerned. In such circumstances the health service provider is entitled to act without waiting for the authorization of the legal representative if the following requirements are met; the intervention is restricted to emergencies, which prevent the practitioner from obtaining the appropriate consent; the intervention must be carried out for the immediate benefit of the individual concerned; the doctor must make every reasonable effort to determine what the patient would want getting to know it from either a patient himself or from the representative of patient [21, 22].

The Council of Europe has also played a significant role in defining, promoting, and protecting the right to health of children. In 2011, the Committee of Ministers adopted the Guidelines on Child-Friendly Health Care. These guidelines prioritize children's needs and voices in healthcare, emphasizing an integrated and multidisciplinary approach called

"Continuum of care" to ensure adequate, child-centered healthcare. The guidelines establish the principle of participation in accordance with state law. If, by state law, the child is capable of consenting to an intervention, the intervention may only be carried out after obtaining their informed consent. When, according to national law, a child is unable to consent, their opinion should be taken into consideration in proportion to their age and degree of maturity [23].

All actors, entrusted by law to give consent for the involvement of a minor in medical procedures, must act in accordance with the best interests of the child. This principle is one of the most widely recognized international principles, emphasizing its importance, as stated in Article 3 of the CRC Convention, "the best interest of the child should be of a primary consideration in all actions concerning children, including health care". The General Comment No. 12 (2009) and No. 15 (2013) of the UN Committee on the Rights of the Child emphasize that in the implementation of Article 24 of the CRC Convention, medical decisions should prioritize the best interest in any health-related decisions [24, 25]. The principle is also sanctioned in the Oviedo Convention - according to Article 6, "medical interventions on minors should only be performed in the child's best interest with appropriate legal authorization". The principle of the "best interest" provided in international conventions has to be directly applied to the child firstly by the parents and in their action by other institutions or other authorities. But in daily practice, the situation is not always very clear. Healthcare providers in their daily work are often confronted with situations involving conflicts with parents or representatives of children. For various reasons, the standard of the best interest of the child is challenging to implement and fully comprehend. There are several situations where significant differences arise between medical and parental decisions. In some cases, it becomes a conflict that is difficult to overcome. These situations require clear legal intervention by the state, as neither the health providers nor the parents should be considered fully empowered to make medical decisions on behalf of the child or to act on their behalf. According to D. Garcia, "...the modern world has had to divide the old welfare construct into two principles known as beneficence and non-maleficence" [26]. The intervention of the state is entirely justified when the actions and decisions of parents cause harm or are maleficent for their children. This is the point at which the state must intervene promptly and without delay. This is the reason why every state should have a well-established legal framework and effective mechanisms for intervention.

Discussion on the ECtHR case law on the child's right to health

Beyond the level of domestic law, the ECHR and the Oviedo Convention give additional guarantees that a minor should take part in the informed consent procedure in proportion to age and degree of maturity. The ECtHR has developed a significant jurisprudence on decision-making involving children. Several principles, including parental consent, the best interest of the child, state intervention, the child's right to be heard, and judicial resolution of disputes, emerge from the jurisprudence of the ECtHR, which carry

significant weight for healthcare providers in their responsibility to apply these principles correctly. Even though health institutions have often claimed to have fully acted in the best interest of the child, the ECtHR has found a violation of the child's right to consent or that of their legal representative, or a failure to refer the matter to an independent body that should resolve the conflict of interest in the child's best interest [27, 28]. In the case Glass v. the United Kingdom [29], the Court found a violation of Article 8 (right to respect for private and family life) because doctors administered diamorphine and issued a "Do not resuscitate" order to a child without the mother's consent and without seeking judicial authorization, despite her objections. The Court emphasized that disputes of this nature must be referred to an independent authority to resolve, especially when there is no immediate urgency [30].

Yet, in certain circumstances, the responsibility of decision-making for a child may become an onerous burden, shaped both by emotional strain and the complexity of medical judgment. For this reason, parental rights in such contexts cannot be regarded as absolute but must yield where necessary to the child's welfare and the principle of the best interests of the child [31]. The European Court of Human Rights has consistently affirmed that the best interests of the child constitute a primary consideration in healthcare-related decisions, even where these may conflict with the interests or expressed wishes of the parents. In Vavřička and Others v. the Czech Republic (2021), the Grand Chamber upheld a compulsory childhood vaccination scheme, emphasizing that public health measures designed to protect children as a group reflect and reinforce the child's best interests [32]. Similarly, in end-of-life contexts such as Gard and Others v. the United Kingdom (2017) and Afiri and Biddarri v. France (2018), the Court accepted domestic courts' reliance on the best-interests standard to authorize the withdrawal of lifesustaining treatment against parental objections [33, 34].

Achieving an appropriate equilibrium between autonomy (the child's right to express views freely and to have them duly considered) and protection (the correlative duty of parents and other adults to safeguard and provide for the child) remains a persistent challenge. This tension is heightened by the fact that children's rights are embedded within a broader normative framework of parental duties and responsibilities, which are themselves directed toward ensuring the child's best interests as the paramount consideration. All this leads to uncertainty about how the increased recognition of children's decision-making capacity in matters concerning their health and general well-being should be addressed in practice by healthcare practitioners. For this purpose, the Council of Europe has endorsed the Guide to Children's Participation in Decisions about Their Health (2024), a practical resource designed for healthcare providers. The guide provides concrete guidance on reconciling conflicts of principles, such as balancing children's autonomy with their protection, by outlining steps for involving children meaningfully in health-related decision-making [35]. According to the Guide, a child's right to informed consent to treatment can be based on age criteria and on the child's competency (Gillick competence), which depends on the child's maturity, understanding, and the nature of the consent required [36]. The Court in P. and S. v. Poland (2012) involving a 14-year-old girl seeking an abortion after rape stressed the importance of her personal decision and her individual autonomy in the medical context. Minors, exceptionally, when capable of reasoning their wishes, must be treated with due regard for their human dignity and personal choices. Thus, it found a violation of Articles 3, 5, and 8 of the ECHR of the authorities who subjected the teen to confusing information, pressure from anti-abortion activists, and even detention in a juvenile center, rather than respecting her choice and vulnerability [37].

Health providers should always act in compliance with the best interests of the child and within their national legal framework. Specifically, in the healthcare context, a child's best interest must be paramount. In line with the UN Convention on the Rights of the Child, the Court has affirmed the paramountcy of this principle [38]. In Vavricka and Others v. Czech Republic (2021), the Grand Chamber reiterated that States are obliged to place the best interests of children, individually and as a group, at the center of all decisions affecting their health and development.

One of the most significant and widely discussed human rights and ethical cases in recent years is that of Charlie Gard in which the Court argued the fine line between the parents' rights to consent and the best interests of the child. In most medical decisions related to children, courts are not involved. Juridical intervention is requested when there is no one to decide for a child (e.g., if the child is orphaned or if parents are unable or unwilling to make a decision) or when there is disagreement about the decision. In rare instances, health professionals and families cannot agree on what would be best for a seriously ill child. As in many other areas of life, when there is an intractable disagreement between different parties about something important, there is a need for an impartial arbiter; the court is asked to make a decision. The court is then asked to determine what is in the best interest of the child [39]. Regardless of the parental opposition, the Court has decided that it is not in Charlie's Gard best interest to receive further treatment and that he should be permitted to "die with dignity". Although the decision recognized the principle of "right to die with dignity" as a safeguard against prolonging suffering through medically futile treatment, a moral and ethical discussion arises in cases of terminally ill adults who may seek to exercise that same right through an autonomous choice to end their life with dignity, but under the European Convention on Human Rights, such requests remain legally impermissible.

ECtHR jurisprudence confirms that the child's best interests are a primary consideration in medical decisions. Actions taken by doctors or the state with a genuinely child-centered motive will pursue a "legitimate aim" under the Convention. However, they must still be necessary and proportionate in how they override parental rights.

"The state has a responsibility to prevent parents from placing their children at a significant risk, or serious harm, if those risks can be avoided at a reasonable cost". It is the role of the state to safeguard the welfare of children when parents' decisions expose them to considerable dangers that pose a substantial threat to the child's well-being. This includes health risks that can result in severe illness, long-term disability, or

death [40]. Under Article 2 (the right to life) and Article 3 (prohibition of inhuman treatment) of the ECHR, the State has a positive obligation to intervene when parental decisions, or lack of care, put the child's life or health at risk [41].

Conclusions

The European Court of Human Rights demonstrates an increasingly nuanced approach to balancing parental authority, medical judgment, and the rights of children and patients under the Convention. Central to this jurisprudence is the doctrine that the child's best interests should always come first in all medical decisions. This core principle is consistently highlighted in cases involving conflicts between parents and healthcare providers, laws permitting the withdrawal of life-sustaining treatments, or patients asserting their autonomy to make medical choices. The Court's reasoning in Glass v. United Kingdom established the baseline: any medical intervention performed on a child without parental consent and without judicial approval may violate Article 8 of the ECHR. Subsequent case law has clarified this position by showing that parental rights, although generally aimed at the child's best interests, are not absolute. When disputes arise, especially in cases involving complex medical disagreements, the courts serve as neutral arbiters responsible for determining what is in the child's best interests. This was clearly demonstrated in Gard and Others v. United Kingdom where both domestic courts and the ECtHR approved the withdrawal of life support for a terminally ill infant, despite parental objections.

The principles extend to adolescents and incapacitated patients, as affirmed in Afiri and Biddarri v. France and Lambert and Others v. France. These cases highlight the need for a clear legal framework, transparent medical procedures, and effective judicial remedies. The ECtHR typically defers to national authorities, citing the margin of appreciation, but also insists that decisions genuinely reflect patients' wishes and protect their dignity. By contrast, the Court's jurisprudence on competent adults reveals a normative asymmetry. The Grand Chamber's judgment in Pindo Mulla v. Spain demonstrates a renewed emphasis on autonomy under Article 8, read in light of Article 9, where the disregard of a Jehovah's Witness's advance refusal of blood transfusion constituted a violation. This case affirms that for competent adults, autonomy in medical decision-making, even when it entails the refusal of life-sustaining treatment, is an indispensable dimension of Convention rights.

These aspects of jurisprudence show both progress and ongoing issues. The ECtHR has strengthened procedural protections for vulnerable children and incapacitated patients, while increasingly emphasizing adult autonomy as vital to human dignity.

However, a structural tension persists in cases of minors' medical decision-making, as healthcare professionals are frequently required to reconcile competing considerations: the expressed preferences of parents (and, where appropriate, of the child), the objective assessment of the child's best interests, and the professional and ethical obligations grounded in medical deontology and the Hippocratic oath. These dimensions do not operate in isolation but intersect in ways that are often complex and, at times, irreconcilable.

The challenge becomes particularly acute in emergency situations, where limited time for reflection necessitates reliance on the physician's professional judgment and ethical discernment. In such circumstances, the health provider must determine, under significant pressure, the course of action that most effectively safeguards the child's dignity, welfare, and right to appropriate care.

References

- Law J, ed. Oxford Dictionary of Law. 9th ed. Oxford, UK: Oxford University Press; 2018. 742 p. doi: 10.1093/acref/9780198802525.001.0001.
- 2. O'Neill O. Autonomy and trust in bioethics. Cambridge: Cambridge University Press; 2002. 213 p. doi: 10.1017/CBO9780511606250.
- 3. Guathier CC. Moral responsibility and respect for autonomy: meeting the communitarian challenge. Kennedy Inst Ethics J. 2000 Dec; 10(4):337-352.
- 4. United Nations Educational, Scientific and Cultural Organization (UNESCO). Universal Declaration on Bioethics and Human Rights. Paris, France: UNESCO; 2005. 12 p.
- 5. Pugh J. Chapter 1. Four Distinctions Concerning Rationality. In: Autonomy, Rationality, and Contemporary Bioethics. Oxford, UK: Oxford University Press; 2020.
- 6. McLean SAM. Autonomy, Consent and the Law. London, UK: Routledge-Cavendish; 2010. 256 p.
- 7. Kim NS. Chapter 1. What does it mean to consent? In: Consentability: Consent and its limits. Part I. Cambridge, UK: Cambridge University Press; 2019. 7-17. doi: 10.1017/9781316691311.002.
- 8. European Court of Human Rights. Case of Vo v. France (Application no 53924/00); Case of R.R. v. Poland (Application no 27617/04); Case of Evans v. the United Kingdom (Application no 6339/05).
- 9. Ilias B, Stein MA, Anastasiou D, eds. The UN Convention on the Rights of Persons with Disabilities: A Commentary. Oxford, UK: Oxford University Press; 2018. 1282 p. doi: 10.1093/law/9780198810667.001.0001.
- 10. Shah P, Thornton I, Kopitnik NL, et al. Informed Consent. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2025 Jan.
- 11. Sandu A. Informed Consent as a Protective Tool of the Right to Autonomy and Dignity of Human Subjects Participating in Biomedical Research, in the Context of the International Law of Human Rights. Jurnalul de Studii Juridice. 2021;16(3–4):29-57. doi: 10.18662/jls/16.3-4/90.
- 12. United Nations (UN). International covenant on civil and political rights. In: Treaties and international agreements registered or filed and recorded with the Secretariat of the United Nations, United Nations Treaty Series, vol 999. New York: United Nations; 1983. 171 p.
- 13. The Nuremberg Code (1947). BMJ. 1996;313:1448. doi: 10.1136/bmj.313.7070.1448.
- 14. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. The Belmont report: ethical principles and guidelines for the protection of human subjects of research. Available from: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html.
- 15. World Medical Association (WMA). Declaration of Helsinki: ethical principles for medical research involving human subjects. Available from: https://www.wma.net/policies-post/wma-declaration-of-helsinki/.
- 16. Council of Europe. European Convention on Human Rights: Convention for the protection of human rights and fundamental freedoms. Rome, Italy: Council of Europe; 1950. 62 p.
- 17. Buck T. International Child Law. London, UK: Routledge Cavendish; 2005. 362 p. doi: 10.4324/9781003076759.
- 18. United Nations (UN). Convention on the Rights of the Child. Available from: https://www.ohchr.org/en/instruments-mechanisms/instruments/convention-rights-child.

- 19. McHale J, McCormack J, eds. Children's Rights in Health Care. Oxford: Oxford University Press; 2018. 49 p.
- 20. Council of Europe. Proceedings of the International Conference on Free and informed consent as a core principle of the protection of human rights in the field of biomedicine. 2017, December 8; Minsk, Belarus. Strasbourg: Council of Europe; 2017. 59 p.
- 21. Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS no 164). Oviedo, Spain: Council of Europe; 1997. 10 p.
- 22. European Court of Human Rights. Case of Glass v. the United Kingdom (Application no 61827/00). Available from: https://hudoc.echr.coe.int/ukr?i=001-61663.
- 23. Council of Europe. Guidelines of the Committee of Ministers of the Council of Europe on child-friendly health care. Strasbourg, France: Council of Europe; 2018. 48 p.
- 24. UN Committee on the Rights of the Child (CRC). General comment no 12: The right of the child to be heard (CRC/C/GC/12). Geneva, Switzerland: United Nations; 2009. 31 p.
- 25. UN Committee on the Rights of the Child (CRC). General comment no 15: The right of the child to the enjoyment of the highest attainable standard of health (CRC/C/GC/15). Geneva, Switzerland: United Nations; 2013. 24p.
- 26. Gracia Guillén D. Bioethics and Pediatrics. In: De los Reyes-López M, Sánchez-Jacob M, eds. Bioethics and Pediatrics: Projects for a Full Life. Madrid: Madrid and Castilla-La Mancha Pediatric Society; 2010. 29-38 (in Spanish).
- 27. Gilbert B, Tripp J. Consent, rights, and choices in health care for children and young people. Consent, Rights and Choices in Health Care for Children. J Med Ethics. 2003 Aug;29(4):e13. doi: 10.1136/jme.29.4.e13.
- 28. Council of Europe; the European Court of Human Rights; European Union Agency for Fundamental Rights. Handbook on European law relating to the rights of the child, 2022 ed. Strasbourg, France: Council of Europe; 2022. 208 p.
- 29. Dorscheidt HHM, Doek JE. Children's Rights in Health Care. Leiden, the Netherlands: Brill; 2019. 678 p.
- 30. Council of Europe; European Court of Human Rights. Guide on the case law of the European Convention on Human Rights: Rights of the Child. Strasbourg, France: Council of Europe; 2025 Feb 28. 79 p.

- 31. März JW. What does the best interests principle of the convention on the rights of the child mean for paediatric healthcare? Eur J Pediatr. 2022 Nov;181(11):3805-3816. doi: 10.1007/s00431-022-04609-2.
- 32. European Court of Human Rights. Case of Vavřička and Others v. the Czech Republic (Applications no 47621/13 and 5 others). Available from: https://hudoc.echr.coe.int/fre?i=001-209039.
- 33. European Court of Human Rights. Case of Gard and Others v. the United Kingdom. (Applications no 39793/17). Available from: https://hudoc.echr.coe.int/fre?i=001-175359.
- 34. European Court of Human Rights. Case of Afiri and Biddarri v. France (Application no 1828/18). Available from: https://hudoc.echr.coe.int/eng-press?i=003-5984825-7658817.
- 35. Council of Europe; Steering Committee for Human Rights in the fields of Biomedicine and Health (CDBIO); Steering Committee for the Rights of the Child (CDENF). Guide to Children's Participation in Decisions about Their Health. Strasbourg: Council of Europe; 2024. 108 p.
- 36. House of Lords. Gillick v. West Norfolk and Wisbech Area Health Authority (AC 112 HL). Available from: https://www.e-lawresources.co.uk/gillick-v-west-norfolk-wisbeck-area-health-authority-1986.
- 37. European Court of Human Rights. Case of P. and S. v. Poland (Application no 57375/08). Available from: https://hudoc.echr.coe.int/fre?i=001-114098.
- 38. Nissen E. The rights of minor EU Member State nationals wishing to enjoy family life with a non-EU parent in their country of nationality: a study in the light of the UN Convention on the Rights of the Child. Oisterwijk, the Netherlands: Wolf Legal Publishers; 2013. 115 p.
- 39. Wilkinson D, Savulescu J. Ethics, conflict and medical treatment for children: From disagreement to dissensus. London, UK: Elsevier; 2018 Sep 4.
- 40. Andrade G. Medical ethics and moral psychology: an integrative approach. London, UK: Routledge-Cavendish; 2025. 192 p. doi: 10.4324/9781003541653.
- 41. European Court of Human Rights. Case of Hanzelkovi v. the Czech Republic (Application no 43643/10). Available from: https://hudoc.echr.coe.int/eng?i=001-149016.

Received 10.08.2025 Revised 16.09.2025 Accepted 20.09.2025

Information about authors

J. Zyberaj, Lecturer, Head of the Civil Law Section, Department of Law, Faculty of Human Sciences, University "Ismail Qemail", Vlore, Albania; e-mail: jonada.zyberaj@gmail.com; https://orcid.org/0000-0001-5762-9422

E. Ikonomi, Lecturer, Department of Law, Faculty of Human Sciences, University "Ismail Qemali", Vlore, Albania; e-mail: ergysa83@yahoo.com; https://orcid.org/0000-0001-8071-4916

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Zyberaj J., Ikonomi E.

University "Ismail Qemali" of Vlora, Faculty of Human Sciences, Vlora, Albania

Права дітей у прийнятті медичних рішень: огляд принципів Європейського суду з прав людини

Резюме. Автономія в прийнятті медичних рішень передбачає здатність особи самостійно вирішувати, яка медична процедура є прийнятною, або відмовитися від лікування. Батьки вважаються основними особами, які приймають рішення щодо здоров'я своїх дітей. Однак коли дії батьків не відповідають найкращим інтересам дитини, суперечки між ними й медичними працівниками щодо лікування дитини зазвичай потребують вирішення судом. У цьому процесі неповнолітній має розглядатися як активний учасник власного лікування. Тому здатність дитини приймати рішення стає важливою, і залежно від віку вона може погоджуватися на лікування або відмовлятися від нього, навіть якщо це суперечить рішенню батьків чи тому, що вважається для дитини

найкращим. Надання медичної згоди забезпечує захист прав і найкращих інтересів неповнолітніх. Держава повинна гарантувати дотримання найкращих інтересів дитини, навіть коли батьки, які мають на це право, можуть поставити під загрозу її благополуччя. На основі аналізу найважливіших рішень Європейського суду з прав людини ця стаття має на меті дослідити роль різних суб'єктів у процесі прийняття медичних рішень щодо неповнолітніх та розв'язання спорів, які можуть виникнути через розбіжності в позиціях батьків та медичних працівників.

Ключові слова: неповнолітні; медична згода; автономія; найкращі інтереси дитини; огляд рішень Європейського суду з прав людини

Огляд літератури / Review of Literature

УДК 616-083.98-039.75-053.2:[614.23/.25:615.211]

DOI: https://doi.org/10.22141/2224-0551.20.7.2025.1926

Снісарь В.І.¹, Кравець О.В.¹, Власов О.О.², Площенко Ю.О.¹, Єгоров С.В.² ¹Дніпровський державний медичний університет, м. Дніпро, Україна ²КНТ «Регіональний медичний центр родинного здоров'я» ДОР, м. Дніпро, Україна

Роль анестезіолога в організації та наданні спеціалізованої паліативної допомоги дітям

Резюме. Актуальність. У цій статті ми розглянули роль дитячого анестезіолога в організації та наданні паліативної допомоги дітям та їхнім сім'ям у межах його професійної компетенції. У багатьох випадках звичайна паліативна допомога містить методи інтенсивної терапії навіть тоді, коли дитина перебуває вдома. Це виходить за рамки компетентності лікаря первинної медико-санітарної допомоги, і тоді для оптимізації комплексного підходу необхідна консультативна, а може, й безпосередня допомога лікаря-анестезіолога. **Матеріали та методи.** Наші спостереження ґрунтуються на аналізі організації паліативної допомоги дітям у КНТ «Регіональний медичний центр родинного здоров'я», бригади якого консультують медичних працівників, які надають лікарські послуги паліативним дітям та їхнім батькам. Відвідування мобільної бригади паліативної допомоги є дуже важливим. Результати. За рік відбулося 716 виїздів, з яких у 21 % випадків бере участь анестезіолог. Це потрібно тоді, коли необхідна організація додаткових складних технологій догляду або рішення про необхідність госпіталізації дитини до стаціонару або відділення інтенсивної терапії. Спеціалізовану паліативну допомогу вдома було надано 24 дітям. Виїзд анестезіолога здебільшого був плановим, але у 35 % випадків виклик бригади був через розвиток кризових подій чи надзвичайних ситуацій із дитиною. Одинадцять дітей було направлено до стаціонару у відділення інтенсивної терапії для забезпечення екстреної допомоги. До трьох дітей, яким вдома проводиться штучна вентиляція легень, лікар-анестезіолог виїжджає планово щонайменше 2 рази на тиждень, а за необхідності і частіше. Висновки. Співпраця лікарів первинної ланки та анестезіологів, що спеціалізуються на паліативній допомозі, має величезний потенціал для взаємної вигоди. Участь анестезіолога в паліативній допомозі дітям забезпечує інтегративну, цілісну форму догляду за медично складними дітьми та їхніми сім'ями.

Ключові слова: діти; паліативна допомога; інтенсивна терапія

Вступ

Паліативна допомога (ПД) дітям являє собою невелику та вузькоспеціалізовану галузь охорони здоров'я, яка відрізняється від паліативної допомоги дорослим, хоча і тісно з нею пов'язана. В ідеалі підтримка дітей, які потребують паліативної допомоги, починається з моменту встановлення діагнозу, а для багатьох дітей з захворюваннями, які обмежують тривалість життя, така потреба може виникнути вже при народженні [1].

Останні години, дні і тижні життя дитини або підлітка з тяжким захворюванням є стресом для сімей, педіатрів та інших осіб, які здійснюють догляд за дитиною. У цій статті ми хочемо розглянути роль дитячого анестезіолога в організації та наданні паліативної допомоги дітям, а також основні елементи допомоги цим пацієнтам та їх сім'ям у межах його професійної компетенції.

В Україні цей розділ медицини визначено Наказом Міністерства охорони здоров'я від 04.06.2020 р. № 1308 «Про удосконалення організації надання паліативної допомоги в Україні» [2] зі змінами (Наказ Міністерства охорони здоров'я від 04.10.2024 р. № 1853 «Про затвердження змін до Порядку надання паліативної допомоги» [3]. Накази визначають необхідність організації

Для кореспонденції: Снісарь Володимир Іванович, доктор медичних наук, професор, професор кафедри анестезіології, інтенсивної терапії та медицини невідкладних станів факультету післядипломної освіти Дніпровського державного медичного університету, вул. Володимира Вернадського, 9, м. Дніпро, 49000, Україна; e-mail: visnisar@gmail.com For correspondence: Volodymyr Snisar, MD, DSc, PhD, Professor at the Department of Anesthesiology, Intensive Care and Emergency Medicine of the Faculty of Postgraduate Education of Dnipro State Medical University, Volodymyra Vernadskogo st., 9, Dnipro, 49000, Ukraine; e-mail: visnisar@gmail.com

Full list of authors information is available at the end of the article.

^{© «}Здоров'я дитини» / «Child's Health» («Zdorov'e rebenka»), 2025

[©] Видавець Заславський О.Ю. / Publisher Zaslavsky О.Yu., 2025

мультидисциплінарної команди, до якої обов'язково повинні входити медичні спеціалісти, а також соціальні працівники, психологи, волонтери, юристи, священники та інші фахівці за потреби. Вони залучаються для надання спеціалізованої паліативної допомоги пацієнту та членам його сім'ї, іншим особам, що займаються доглядом за дитиною. Згідно з рекомендаціями Міжнародної мережі паліативної допомоги дітям (ICPCN) одна із головних цілей команди — переконатися, що всі враховують ситуацію сім'ї і те, як полегшення симптомів у дитини, комунікацію та підтримку сім'ї [4].

За даними С. Feudtner et al., у Сполучених Штатах Америки приблизно 20 % дитячих смертей відбувається у відділеннях невідкладної допомоги [1]. В Україні, на жаль, відсутні подібні дані, що тягне за собою необхідність вивчення зазначеної проблеми. Це дуже важливо для подальшого планування паліативної допомоги дітям в Україні, особливо у відділеннях інтенсивної терапії, що потребує окремого розгляду [5]. Враховуючи зростання кількості дитячих смертей у стаціонарах серед пацієнтів з ускладненими захворюваннями [6, 7], все більше таких сімей обирає домашній догляд за дитиною з тяжкими захворюваннями [8].

Таким чином, члени команди паліативної допомоги спільно приділяють час, щоб краще пізнати дитину та її сім'ю. Оскільки потреби кожної дитини та її сім'ї є унікальними, залучення різних фахівців команди може бути потрібним у різний час.

Деякі дитячі смерті відбуваються протягом декількох хвилин або днів після спричиняючих подій (наприклад, ненавмисна травма, вкрай передчасні пологи, катастрофічне захворювання). Інші відбуваються протягом кількох днів або років після початкового діагнозу або травми, особливо коли інтенсивні методи лікування продовжують життя (від нових ліків до домашньої штучної вентиляції легень). Це змінює траєкторію перебігу основного захворювання та сприяє загальній медичній складності цього питання.

Важливе партнерство між пацієнтами та сім'ями з лікарями загальної практики — сімейної медицини може бути доповнене шляхом залучення спеціалістів різного профілю. L. Keele et al. зазначають, що спеціалізована педіатрична паліативна допомога має залучатися для надання консультацій щодо подальшого клінічного лікування, ухвалення складних рішень, а також для задоволення соціальних і духовних потреб, які виходять за межі можливостей бригади первинної медико-санітарної допомоги [9].

Таким чином, базова паліативна допомога дітям та підліткам надається у дитячих відділеннях лікарями та вдома лікарями загальної практики. Спеціалізована паліативна допомога надається спеціалізованими багатопрофільними дитячими паліативними командами або у хоспісах, або шляхом залучення виїзних бригад з лікарень [10].

У багатьох випадках звичайна паліативна допомога (догляд) може містити і методи інтенсивної терапії навіть у тих випадках, коли дитина перебуває вдома. Це виходить за рамки компетентності лікаря загальної практики — сімейної медицини, і тоді для оптимізації комплексного підходу до допомоги дитині необхідна консультативна, а можливо, й безпосередня допомога лікаря-анестезіолога. Складно сказати, коли анестезіолога буде залучено до бригади паліативної допомоги, оскільки це залежить від виду захворювання, його прогресування, віку дитини, а також сімейних умов.

Як частина стандартної допомоги повинен бути впроваджений також систематичний скринінг симптомів і потреб, оскільки нещодавнє дослідження показує, що діти з діагнозами, які обмежують тривалість життя, мають велику кількість різних симптомів і значні проблеми наприкінці життя [22]. Аналогічним чином інше дослідження показує, що діти, основний діагноз яких був тісно пов'язаний з інтенсивним лікуванням, отримали таке лікування протягом останнього місяця життя. Діти, які померли від солідних пухлин, отримували лікування значно нижчої інтенсивності, ніж діти із захворюваннями, відмінними від раку та онкогематологічних захворювань. Дослідники доходять висновку, що відмінності в лікуванні дітей з солідними пухлинами та онкогематологічними захворюваннями зумовлені відмінностями в етіології захворювання і що це може бути справедливим для інших незлоякісних захворювань [11].

У своєму огляді Sara Rhodes Short, Rachel Thienргауооп показали всі причини паліативу у дітей від народження до 19 років, які закінчувалися смертю. Це вади розвитку, тяжкі травми різного генезу, хронічні захворювання легень та серцево-судинної системи тощо [12]. Автори показали, що всі діти перебували в хоспісах, а частина дітей померла у відділенні реанімації та інтенсивної терапії.

Звичайний догляд у рамках практики спеціаліста загальної практики (сімейного лікаря) не потребує спеціальних знань у галузі педіатричної паліативної допомоги. Однак у випадках, коли дитина потребує інтенсивної допомоги та складно прийняти рішення, педіатри можуть звернутися за допомогою до фахівців з інтенсивної терапії або навіть перевести цю дитину у відділення реанімації та інтенсивної терапії (ВРІТ) [13].

На думку Siti Nur Hanim Buang et al. [14], паліативна допомога є невід'ємним компонентом оптимальної практики інтенсивної терапії для дітей, які зіткнулися з небезпечними для життя захворюваннями. Стан цих дітей часто погіршується, і якщо у них є проблеми та потреби, що виходять за рамки суто клінічних факторів, це спонукає педіатрів до інтеграції нових підходів за межами звичайної педіатричної паліативної допомоги, що потребують застосування додаткових елементів догляду, які можливі тільки в педіатрії.

Так, Асоціація допомоги дітям із загрозливими для життя або термінальними захворюваннями та їхнім сім'ям виділяє 4 категорії дітей, які підлягають паліативному лікуванню (табл. 1) [16].

Можна сказати, що діти першої категорії потребують допомоги анестезіолога лише для призначення та підбору аналгетичних препаратів. Це може бути здійснено і у хірургічному чи онкологічному відділенні. Немає необхідності їх госпіталізувати до ВРІТ. Що

стосується дітей 2—4-ї категорії, то спрогнозувати динаміку стану буває складно: може настати переломний момент, коли для збереження життя знадобиться їхня госпіталізація до ВРІТ. Зрозуміло, що немає варіантів їхнього лікування, але залежно від клінічної ситуації підтримання роботи організму може продовжити їхнє життя. Необхідно також враховувати бажання та потреби батьків.

Однією з особливостей паліативної допомоги дітям є те, що морально-етична сторона цієї допомоги значно відрізняється від дорослої паліативної допомоги. Батьки, які спостерігають за повільною смертю своїх дітей, завжди хочуть, щоб допомога їхній дитині проводилася у всіх випадках і за будь-якої тяжкості їх стану. Вони іноді відчувають певне невдоволення, думаючи про те, що інтенсивна допомога була надана не в повному обсязі, що, можливо, продовжило б життя їх дитині. Для запобігання подібним сумнівам та зменшення психологічної напруги важливо проводити відповідні бесіди з батьками з урахуванням їх індивідуальних особливостей. У такому разі можна надати такі рекомендації:

- кожен випадок має розглядатися індивідуально, а аналіз ризиків має бути зосереджений на конкретній дитині з урахуванням усіх відповідних медичних характеристик;
- обсяг і тип інформації та прийняття рішень повинні бути індивідуалізовані відповідно до потреб сім'ї;
- інформація має бути збалансованою (не просто перерахування ризиків та потенційних несприятливих результатів). Батьки хочуть отримати розумну надію. Батьки повинні знати, що якщо стан їхньої дитини погіршиться, вона отримає повний обсяг інтенсивної допомоги незалежно від виду її паліативного стану [17].

Медичним працівникам, які беруть участь у роботі бригад з надання паліативної допомоги, часто не вистачає спеціальної підготовки та знань у галузі інтенсивної терапії, а спеціалізовані бригади з надання паліативної допомоги дітям можуть бути недоступні. Це може призвести до дефіциту високоінтенсивного догляду та викликати певні конфлікти з боку батьків, а не їх підтримку та відкрите спілкування. Тому організація паліативної допомоги дітям повинна бути комплексною, міждисциплінарною і припускати інтеграцію послуг паліативної допомоги в наявні системи, такі

як дитячі відділення інтенсивної терапії, для забезпечення постійної індивідуальної підтримки, контролю симптомів та догляду в кінці життя, при цьому зберігаючи гідність і автономію пацієнта [18].

В умовах лікарні паліативна допомога має інтегруватися до дитячих відділень інтенсивної терапії для надання одночасного догляду та лікування, що продовжує життя, а бригади паліативної допомоги повинні працювати разом з лікарями-анестезіологами ВРІТ, забезпечуючи безперебійну координацію та догляд. До того ж це дозволить організувати безперервне навчання всього міждисциплінарного персоналу методів інтенсивної паліативної допомоги дітям.

Матеріали та методи

Огляд літератури, який увійшов до статті, включав кількісні та якісні результати щодо участі анестезіологів та лікарів інтенсивної терапії у наданні допомоги паліативним дітям. Ми використовували бази даних PubMed, Embase та Medline з наступною фільтрацією 158 публікацій. У результаті пошуку відібрано 21 статтю, які найбільше відповідали меті нашого дослідження. Були використані накази Міністерства охорони здоров'я, які визначають організацію паліативної допомоги дітям. Для оцінки якості надання паліативної допомоги дітям та ролі анестезіолога у цій допомозі були проаналізовані дані звіту спеціалізованої бригади КНТ «Регіональний медичний центр родинного здоров'я» ДОР за 2024 рік. Результати ґрунтувались на особистому досвіді, включалися в кількісному вираженні й описувалися в поточному стані.

Результати та обговорення

Наші спостереження ґрунтуються на аналізі організації паліативної допомоги дітям у КНТ «Регіональний медичний центр родинного здоров'я» ДОР, бригади якого надають лікувально-консультативну допомогу всім медичним працівникам, що надають лікарські послуги паліативним дітям та їхнім батькам (табл. 2).

Аналізуючи організацію паліативної допомоги, слід сказати про наявність високої інтеграції ПД у ВРІТ, що значною мірою показало високу ефективність у поєднанні первинної, вторинної та третинної паліативної педіатричної допомоги. Наявну модель загалом можна розділити на інтегративну, консультативну, телекому-

Таблиця 1. Категорії дітей, яким повинна надаватися паліативна допомога, згідно з рекомендаціями Асоціації паліативної допомоги дітям [4]

Група 1	Діти з такими станами, коли лікування можливе, але може виявитися неефективним. Цим дітям може знадобитися доступ до послуг паліативної допомоги разом зі спробами лікування та/або у разі неефективності лікування (діти з онкологічними захворюваннями)
Група 2	Діти із захворюваннями, за яких передчасна смерть є неминучою, але може знадобитися тривале інтенсивне лікування, спрямоване на продовження життя та забезпечення можливості участі в повсякденному житті (наприклад, при муковісцидозі, м'язовій дистрофії Дюшенна чи ВІЛ-інфекції)
Група 3	Діти з прогресуючими захворюваннями, у яких немає варіантів лікування, крім виключно паліативного, яке може тривати протягом багатьох років (спінальна м'язова атрофія, адренолейкодистрофія)
Група 4	Діти з необоротними, але непрогресуючими захворюваннями та складними медичними потребами, які призводять до ускладнень та підвищують імовірність передчасної смерті (тяжкий дитячий церебральний параліч, синдроми багатьох вад розвитку)

нікаційну та інтенсивну частини. Дещо подібне пропонував J.E. Nelson et al. [19] у дорослих паліативних хворих.

Інтегративна модель визначає стандартизований підхід до надання ПД як повсякденну практику команди для всіх пацієнтів та сімей, які зіткнулися з критичним захворюванням. Це традиційний виїзд лікарів паліативної бригади для контролю за станом пацієнта та підтримки його батьків.

Консультативна і телекомунікаційна модель включає залучення спеціалізованої команди паліативної допомоги в міру необхідності для тих дітей, у яких найвищий ризик несприятливих результатів. До цієї команди обов'язково входить лікар педіатричного ВРІТ. Ця модель виявилася найуспішнішою, оскільки вона дозволила своєчасно визначити динаміку наростання тяжкості стану дитини та місце подальшої допомоги з можливою госпіталізацією її до ВРІТ.

Зрозуміло, що паліативна допомога всім дітям надається на етапі первинної ланки. Це здебільшого ті пацієнти, які потребують лише догляду. Їх стан не потребує будь-яких додаткових процедур та спеціальних методів їх виходжування. Ці діти перебувають під наглядом медичних сестер та лікарів удома. Важко сказати, наскільки кваліфікація середнього медичного та лікарського персоналу забезпечить соціальну медичну та психіатричну підтримку дитині та її батькам. Тому відвідування мобільної бригади паліативної допомоги є дуже важливим. Ось чому за рік кількість таких виїздів становить 716, з яких у 21 % випадків бере участь анестезіолог (табл. 3). Його участь потрібна тоді, коли необхідна організація додаткових і більш складних технологій догляду або рішення про необхідність госпіталізації дитини до стаціонару або ВРІТ.

Госпіталізація дітей, стан яких значно погіршився, здійснюється тільки в КНТ «Регіональний медичний центр родинного здоров'я» ДОР, і, як ми бачимо з табл. 2, 86% з них одразу прямують у відділення інтенсивної терапії.

Паліативна допомога у ВРІТ проводиться за такими напрямками [20]:

- небезпечне для життя захворювання, при якому тільки підтримується життя дитини, терапія визнана марною, дитина може померти;
- неконтрольовані симптоми, необхідність спеціальної допомоги, яка недоступна або недоцільна у звичайному відділенні;

— значна морбідність унаслідок прогресуючого злоякісного захворювання або хронічного стану, що обмежує тривалість життя.

Більшість відділень інтенсивної терапії спроєктована з урахуванням оптимальної ефективності надання інтенсивної терапії, а не для забезпечення присутності сім'ї, що ускладнює комунікацію, орієнтовану на сім'ю. В організації інтенсивної терапії для паліативних дітей необхідно дотримуватися тих напрямків, які описані S. Amy et al. [20]:

- відсутність обмеження щодо застосування препаратів та проведення методів респіраторної підтримки;
 - атів та проведення методів респіраторної підтримки; — швидкий перехід до життєзабезпечуючих заходів;
- володіння персоналом BPIT навичками паліативного інтенсивного догляду;
- досвід і знання у надаванні догляду вмираючим дітям;
 - присутність батьків;
 - доступність психосоціальної допомоги.

Клінічний психолог має бути залучений обов'язково, оскільки він може застосувати обґрунтовані методи втручання при емоційній напрузі батьків та персоналу ВРІТ.

Слід зупинитися на ще одній проблемі, яка виникає у відділенні інтенсивної терапії під час вмирання паліативної дитини.

У проспективному міжнародному багатоцентровому дослідженні було зазначено, що не всім пацієнтам у момент їхнього вмирання у відділенні інтенсивної терапії проводилася серцево-легенева реанімація. Автори показали, що у відділеннях інтенсивної терапії пацієнтам, які померли там, рідше проводилась серцево-легенева реанімація, бо лікарі отримували розпорядження «не реанімувати» або звертатися за консультацією до фахівців з паліативної допомоги [21].

Ми розуміємо абсолютну неефективність реанімаційних заходів, які проводяться дітям, чиє життя закінчується через тяжке хронічне захворювання, але проведення цим дітям реанімації буде психологічним полегшенням для батьків.

Догляд за дітьми, які живуть вдома з тяжкими захворюваннями, є складною проблемою. Його організація потребує багаторівневого підходу, який враховує домашню обстановку, взаємини між батьками, соціальний рівень сім'ї та її фінансові можливості, а також готовність забезпечувати догляд тяжкій паліативній дитині [22].

Таблиця 2. Паліативна допомога у КНТ «Регіональний медичний центр родинного здоров'я» ДОР

Рік	Проліковано			Онкозахво-		Летальність		Місце лікування	
	Усього	< 1 року	> 1 року	рювання	Інші	Загальна кількість	%	BPIT	Інші відділення
2021	8	5	23	8	20	11	39,3	24	4
2022	5	5	30	6	29	7	20,0	34	1
2023	8	6	42	6	42	12	25,0	41	7
2024	4	4	30	7	27	9	26,5	26	8
2025	2	5	17	3	19	6	27,3	19	3

Місце надання паліативної допомоги	Кількість дітей						
Первинна медична допомога	383						
Стаціонарна паліативна допомога	226						
Кількість виїздів мобільної бригади	716						
Кількість виїздів спеціалізованої бригади	24						
Кількість дітей, для яких організовано постійне спеціалізоване спостереження	24						
Кількість дітей, спрямованих в стаціонар для спеціалізованої паліативної допомоги	11						
Кількість телекомунікаційних консультацій	360						

Таблиця 3. Паліативна допомога дітям в регіоні за один рік

Спеціалізовану домашню паліативну допомогу було надано 24 дітям. Виїзд анестезіолога здебільшого був плановим, але у 35 % випадків виклик бригади був через розвиток кризових подій чи надзвичайних ситуацій із дитиною. Одинадцять дітей було направлено до стаціонару у відділення інтенсивної терапії для забезпечення екстреної допомоги. До трьох дітей, яким вдома проводиться штучна вентиляція легень, лікаранестезіолог виїжджає планово щонайменше 2 рази на тиждень, а за необхідності і частіше.

Висновки

Догляд за дітьми з тяжкими захворюваннями, які наближаються до кінця свого життя, потребує досвіду багатьох фахівців, і анестезіологи відіграють у цьому ключову роль. Анестезіологи частіше стикаються зі складними клінічними ситуаціями, що потребують застосування принципів та практики паліативної допомоги. У цьому сенсі проведення спеціальної підготовки для підвищення знань про паліативну допомогу дозволить забезпечити високоякісне симптоматичне лікування, сімейне консультування та керівництво пацієнтами наприкінці життя у відділеннях інтенсивної терапії.

Таким чином, співпраця лікарів та анестезіологів, що спеціалізуються на паліативній допомозі, має величезний потенціал для взаємної вигоди. Участь анестезіолога у паліативній допомозі дітям забезпечує інтегративну, цілісну форму догляду за медично складними дітьми та їхніми сім'ями.

Конфлікт інтересів. Автори заявляють про відсутність конфлікту інтересів та власної фінансової зацікавленості при підготовці даної статті.

Інформація про фінансування. Дослідження не має окремого додаткового фінансування.

Список літератури

- 1. Feudtner C, et al. Appendix F: pediatric end-of-life and palliative care: epidemiology and health service use/Dying in America: Improving quality and honoring individual preferences near the end of life. National Academies Press; 2015. Available from: http://dx.doi.org/10.17226/18748.
- 2. Наказ Міністерства охорони здоров'я від 04.06.2020 р. № 1308 «Про удосконалення організації надання паліативної допомоги в Україні». https://zakon.rada.gov.ua/laws/show/z0609-20#Text.

- 3. Наказ Міністерства охорони здоров'я від 04.10.2024 р. № 1853 «Про затвердження змін до Порядку надання паліативної допомоги». https://zakon.rada.gov.ua/laws/show/z1746-24#Text.
- 4. Marston J, Boucher S, Downing J. International Children's Palliative Care Network: A Global Action Network for Children With Life-Limiting Conditions. Journal of Pain and Symptom Management [Internet]. 2018 Feb;55(2):S104-11. Available from: http://dx.doi.org/10.1016/j.jpainsymman.2017.03.024.
- 5. Knapp J, Mulligan-Smith D. Death of a Child in the Emergency Department. Pediatrics [Internet]. 2005 May 1;115(5):1432-7. Available from: http://dx.doi.org/10.1542/peds.2005-0317.
- 6. Meert KL, Keele L, Morrison W, Berg RA, Dalton H, Newth CJL, et al. End-of-Life Practices Among Tertiary Care PICUs in the United States. Pediatric Critical Care Medicine [Internet]. 2015 Sep;16(7):e231-8. Available from: http://dx.doi.org/10.1097/pcc.00000000000000520.
- 7. Trowbridge A, Walter JK, McConathey E, Morrison W, Feudtner C. Modes of Death Within a Children's Hospital. Pediatrics [Internet]. 2018 Oct 1;142(4). Available from: http://dx.doi.org/10.1542/peds.2017-4182.
- 8. DeCourcey DD, Silverman M, Oladunjoye A, Balkin EM, Wolfe J. Patterns of Care at the End of Life for Children and Young Adults with Life-Threatening Complex Chronic Conditions. The Journal of Pediatrics [Internet]. 2018 Feb;193:196-203.e2. Available from: http://dx.doi.org/10.1016/j.jpeds.2017.09.078.
- 9. Keele L, Keenan HT, Sheetz J, Bratton SL. Differences in Characteristics of Dying Children Who Receive and Do Not Receive Palliative Care. Pediatrics [Internet]. 2013 Jul 1;132(1):72-8. Available from: http://dx.doi.org/10.1542/peds.2013-0470.
- 10. Lykke C, Ekholm O, Olsen M, Sjøgren P. Paediatric end-oflife care — symptoms and problems: parent assessment. BMJ Supportive Palliative Care [Internet]. 2021 Mar 11;13(e2):e327-33. Available from: http://dx.doi.org/10.1136/bmjspcare-2021-002891.
- 11. Wolff SL, Christiansen CF, Johnsen SP, Schroeder H, Darlington AS, Jespersen BA, et al. Inequality in place-of-death among children: a Danish nationwide study. European Journal of Pediatrics [Internet]. 2021 Sep 4;181(2):609-17. Available from: http://dx.doi.org/10.1007/s00431-021-04250-5.
- 12. Short SR, Thienprayoon R. Pediatric palliative care in the intensive care unit and questions of quality: a review of the determinants and mechanisms of high-quality palliative care in the pediatric intensive care unit (PICU). Translational Pediatrics [Internet]. 2018 Oct;7(4):326-43. Available from: http://dx.doi.org/10.21037/tp.2018.09.11.
- 13. Davis S, Nunn M. Palliative Communication in the Pediatric Intensive Care Unit. Critical Care Nursing Clinics of North America [Intensity.]. 2023 Sep;35(3):287-94. Available from: http://dx.doi.org/10.1016/j.cnc.2023.04.003.

- 14. Buang SNH, Loh SW, Mok YH, Lee JH, Chan YH. Palliative and Critical Care: Their Convergence in the Pediatric Intensive Care Unit. Frontiers in Pediatrics [Internet]. 2022 Jun 10;10. Available from: http://dx.doi.org/10.3389/fped.2022.907268.
- 15. Moynihan K, Kaye E, Bailey V, Wolfe J, Thiagarajan R, Snaman J. 417: Palliative Care Integration In Pediatric Cardiac Intensive Care Units: A Novel Champion-Based Model. Critical Care Medicine [Internet]. 2019 Jan;47(1):189. Available from: http://dx.doi.org/10.1097/01.ccm.0000551170.37983.db.
- 16. Update on the palliative care approach at the pediatric intensive care unit. Archivos Argentinos de Pediatria [Internet]. 2022 Dec 1;120(6). Available from: http://dx.doi.org/10.5546/aap.2022.eng.e255.
- 17. Prentice TM, Gillam L, Davis PG, Janvier A. The use and misuse of moral distress in neonatology. Seminars in Fetal and Neonatal Medicine [Internet]. 2018 Feb;23(1):39-43. Available from: http://dx.doi.org/10.1016/j.siny.2017.09.007.
- 18. Crain N, Miller J. Palliative Care in the Pediatric Intensive Care Unit. AACN Advanced Critical Care [Internet]. 2024 Jun 15;35(2):134-45. Available from: http://dx.doi.org/10.4037/aacnacc2024104.
- 19. Nelson JE, Bassett R, Boss RD, Brasel KJ, Campbell ML, Cortez TB, et al. Models for structuring a clinical initiative to enhance pallia-

tive care in the intensive care unit: A report from the IPAL-ICU Project (Improving Palliative Care in the ICU). Critical Care Medicine [Internet]. 2010 Sep;38(9):1765-72. Available from: http://dx.doi.org/10.1097/ccm.0b013e3181e8ad23.

- 20. Porter AS, Gouda SR, Broden EG, Snaman JM. "Palliative Intensive Care" at the End of a Child's Life. Hospital Pediatrics [Internet]. 2023 Nov 3;13(12):e395-8. Available from: http://dx.doi.org/10.1542/hpeds.2023-007348.
- 21. Nicoll J, Dryden-Palmer K, Frndova H, Gottesman R, Gray M, Hunt EA, et al. Death and Dying in Hospitalized Pediatric Patients: A Prospective Multicenter, Multinational Study. Journal of Palliative Medicine [Internet]. 2022 Feb 1;25(2):227-33. Available from: http://dx.doi.org/10.1089/jpm.2021.0205.
- 22. Boyden JY, Hill DL, LaRagione G, Wolfe J, Feudtner C. Home-Based Care for Children with Serious Illness: Ecological Framework and Research Implications. Children [Internet]. 2022 Jul 26;9(8):1115. Available from: http://dx.doi.org/10.3390/children 9081115.

Отримано/Received 10.09.2025 Рецензовано/Revised 01.11.2025 Прийнято до друку/Accepted 05.11.2025

Information about authors

Volodymyr Snisar, MD, DSc, PhD, Professor at the Department of Anesthesiology, Intensive Care and Emergency Medicine of the Faculty of Postgraduate Education of Dnipro State Medical University, Dnipro, Ukraine; e-mail: visnisar@gmail.com; https://orcid.org/0000-0002-1304-4665

Olha Kravets, MD, DSc, PhD, Professor, Head of the Department of Anesthesiology, Intensive Care and Emergency Medicine, Faculty of Postgraduate Education, Dnipro State Medical University, Dnipro, Ukraine; https://orcid.org/0000-0003-1340-3290

Oleksii Vlasov, MD, DSc, PhD, Professor, Head of the Municipal non-profit organization "Regional Medical Centre of Family Health" of Dnipropetrovsk Regional Council, Dnipro, Ukraine; https://orcid.org/0000-0003-1575-9872

Yuliia Ploshchenko, PhD in Medicine, Associate Professor of the Department of Anesthesiology, Intensive Care and Emergency Medicine of the Faculty of Postgraduate Education of Dnipro State Medical University, Dnipro, Ukraine; https://orcid.org/0000-0003-0538-0164

Serhii Ehorov, PhD in Medicine, Head of the department of intensive therapy and efferent methods of treatment of acute and chronic intoxications in Municipal enterprise "Regional Medical Center of Family Health" of the Dnipro Regional Council, Dnipro, Ukraine; https://orcid.org/0009-0004-5002-0947

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript. **Information about funding.** There were no funding.

V.I. Snisar¹, O.V. Kravets¹, O.O. Vlasov², Yu.O. Ploshchenko¹, S.V. Ehorov²

¹Dnipro State Medical University, Dnipro, Ukraine

²Municipal Non-Profit Organization "Regional Medical Centre of Family Health of Dnipropetrovsk Regional Council", Dnipro, Ukraine

The role of an anesthesiologist in the organization and provision of specialized palliative care for children

Abstract. Background. In this article, we examined the role of a pediatric anesthesiologist in the organization and provision of palliative care for children and their families, which is within his competence. In many cases, ordinary palliative care includes intensive care methods, even when the child is at home. This goes beyond the competence of a primary care physician and then, to optimize the comprehensive approach, consultative, and perhaps direct assistance from an anesthesiologist is necessary. **Materials and methods.** Our observations are based on an analysis of the organization of palliative care for children in the Dnipro Regional Medical Center of Family Health, whose teams consult medical workers who provide palliative care for children and their parents. Visits by a mobile palliative care team are very important. **Results.** There were 716 visits per year, of which an anesthesiologist participated in 21 % of cases. This is required when it is necessary to organize

additional, more complex care technologies or decide on the need to hospitalize a child to an inpatient facility or intensive care unit. Specialized palliative care at home was provided to 24 children. Anesthesiologist's visit was mostly planned, but in 35 % of cases, the team was called due to the development of crisis events or emergencies with the child. Eleven children were admitted to the intensive care unit to provide emergency care. An anesthesiologist makes scheduled visits, at least twice a week, to the three children who are ventilated at home, and more often if necessary. **Conclusions.** Collaboration between primary care physicians and anesthesiologists specializing in palliative care has enormous potential for mutual benefit. In essence, the anesthesiologist's involvement in palliative care for children provides an integrative, holistic form of care for medically complex children and their families.

Keywords: children; palliative care; intensive care