Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

International journal of endocrinology Том 13, №1, 2017

Back to issue

Diabetes mellitus: the role of genetic factors in the onset of the disease

Authors: Буряковская А.А., Исаева А.С.
ГУ «Национальный институт терапии им. Л.Т. Малой НАМН Украины», г. Харьков, Украина

Categories: Endocrinology

Sections: Specialist manual

print version


Summary

У роботі наведено аналіз досліджень, присвячених генетиці цукрового діабету 2-го типу. Проаналізовані літературні джерела останніх років. Висвітлена роль однонуклеотидних поліморфізмів у генах, що асоціюються з розвитком цукрового діабету. Також обговорюється роль чинників довкілля в розвитку цукрового діабету і можливість використання даних генетичних досліджень у практиці.

В данной работе представлен анализ исследований, посвященных генетике сахарного диабета 2-го типа. Проанализированы литературные источники последних лет. Освещена роль однонуклеотидных полиморфизмов в генах, ассоциированных с развитием сахарного диабета. Также обсуждается роль факторов окружающей среды в развитии сахарного диабета и возможность использования данных генетических исследований в практике.

This paper presents the analysis of the data of studies on the genetics of type 2 diabetes mellitus. High scientific quality papers of the recent years were used to prepare this work. The article deals with the role of single-nucleotide polymorphisms in genes associated with the development of diabetes mellitus, prognosis of the disease and efficacy of the treatment. It also discusses the role of environmental factors in the development of diabetes mellitus and the use of results of genetics trials in practice.


Keywords

цукровий діабет 2-го типу; генетика; інсулінорезистентність; дисфункція бета-клітин

ахарный диабет 2-го типа; генетика; инсулинорезистентность; дисфункция бета-клеток

type 2 diabetes mellitus; genetics; insulin resistance; beta-cell dysfunction


For the full article you need to subscribe to the magazine.


Bibliography

1. McTaggart J.S. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet / J.S. McTaggart, R.H. Clark, F.M. Ashcroft // J. Physiol. — 2010. — Vol. 588(Pt. 17). — P. 3201-9. — doi: 10.1113/jphysiol.2010.191767. 
2. Li Y.Y. The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-ana–lysis of 6,109 subjects / Y.Y. Li // Mol. Biol. Rep. — 2013. — Vol. 40(1). — P. 141-6. — doi: 10.1007/s11033-012-2042-9. Epub 2012 Oct 11.
3. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population / D. Zhou, D. Zhang, Y. Liu [et al.] // J. Hum. Genet. — 2009. — Vol. 54(7). — P. 433-5. — doi: 10.1038/jhg.2009.54. Epub 2009 Jun 5.
4. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study / N.M. Phani, V. Guddattu, R. Bellampalli [et al.] // PLoS One. — 2014. — Vol. 9(9). — P. e107021. — doi: 10.1371/journal.pone.0107021. eCollection 2014.
5. Case Report: Preservation of Reduced Numbers of Insulin-Positive Cells in Sulfonylurea-Unresponsive KCNJ11-related Diabetes [Электронный ресурс] / S.A. Greeley, M.C. Zielinski, A. Poudel [et al.] // J. Clin. Endocrinol. Metab. — 2016. — Режим доступа: jc20162826. [Epub ahead of print]
6. Habitual coffee intake, genetic polymorphisms, and type 2 diabetes / J.K. Lee, K. Kim, Y. Ahn, M. Yang, J.E. Lee // Eur. J. Endocrinol. — 2015. — Vol. 172(5). — P. 595-601. — doi: 10.1530/EJE-14-0805. Epub 2015 Mar 9.
7. Florez J.C. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits / J.C. Florez, J. Hirschhorn, D. Altshuler // Annu Rev. Genomics. Hum. Genet. — 2003. — Vol. 4. — P. 257-91.
8. Genetics, diabetes mellitus heterogeneity, and coronary heart disease / J.I. Rotter, C.M. Vadheim, L.J. Raffel, D.L. Rimoin // Prog. Clin. Biol. Res. — 1984. — Vol. 147. — P. 445-78.
9. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins / B. Newman, J.V. Selby, M.C. King, C. Slemenda, R. Fabsitz, G.D. Friedman // Diabetologia. — 1987. — Vol. 30(10). — P. 763-8.
10. Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets /
M.M. Ho, P. Yoganathan, K.Y. Chu [et al.] // BMC Genet. — 2013. — Vol. 14. — P. 10. — doi: 10.1186/1471-2156-14-10.
11. The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium / G. Willemsen, K.J. Ward, C.G. Bell [et al.] // Twin Res. Hum. Genet. — 2015. — Vol. 18(6). — P. 762-71. — doi: 10.1017/thg.2015.83.
12. Welsh K.M. Maturity-Onset Diabetes of the Young: A Genetic Form of Diabetes in Children / K.M. Welsh // J. Pediatr. Nurs. — 2016. — pii: S0882-5963(16)30396-7. — doi: 10.1016/j.pedn.2016.11.003. [Epub ahead of print]
13. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus / P. Froguel, H. Zouali, N. Vionnet [et al.] // N. Engl. J. Med. — 1993. — Vol. 328(10). — P. 697-702.
14. An analysis of the sequence of the BAD gene among patients with maturity-onset diabetes of the young (MODY) / K. Antosik, P. Gnyn, P. Jarosz-Chobot [et al.] // J. Pediatr Endocrinol. Metab. — 2016. — pii: /j/jpem.ahead-of-print/jpem-2016-0239/jpem-2016-0239.xml. doi: 10.1515/jpem-2016-0239. [Epub ahead of print]
15. Genetics and Diabetes [Электронный ресурс]. — Режим доступа: http://www.who.int/genomics/about/Diabetis-fin.pdf
16. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young / M. Szopa, A. Ludwig-Gaікzowska, P. Radkowski [et al.] // Pol. Arch. Med. Wewn. — 2015. — Vol. 125(11). — P. 845-51. 
17. Genetic Confirmation Rate in Clinically Suspected Maturity-Onset Diabetes of the Young / A.J. Brahm, G. Wang, J. Wang [et al.] // Can. J. Diabetes. — 2016. — Vol. 40(6). — P. 555-560. — doi: 10.1016/j.jcjd.2016.05.010. 
18. Althari S. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes / S. Althari, A.L. Gloyn // Rev. Diabet. Stud. — 2015. — Vol. 12(3–4). — P. 330-48. — doi: 10.1900/RDS.2015.12.330. Epub 2016 Feb 10.
19. ATP-dependent potassium channels and type 2 diabetes mellitus / D.H. Bonfanti, L.P. Alcazar, P.A. Arakaki [et al.] // Clin. Biochem. — 2015. — Vol. 48(7–8). — P. 476-82. — doi: 10.1016/j.clinbiochem.2014.12.026. Epub 2015 Jan 10.
20. Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? / M.J. Riedel, P. Boora, D. Steckley, G. de Vries, P.E. Light // Diabetes. — 2003. — Vol. 52(10). — P. 2630-5.
21. KCNQ1 Variants Associate with Hypertension in Type 2 Diabetes and Affect Smooth Muscle Contractility In Vitro / K.C. Huang, T.M. Li, X. Liu [et al.] // J. Cell. Physiol. — 2017. — doi: 10.1002/jcp.25775. [Epub ahead of print]
22. Variant rs2237892 of KCNQ1 Is Potentially Associated with Hypertension and Macrovascular Complications in Type 2 Diabetes Mellitus in A Chinese Han Population / W. Zhang, H. Wang, X. Guan, Q. Niu, W. Li // Genomics Proteomics Bioinformatics. — 2015. — Vol. 13(6). — P. 364-70. — doi: 10.1016/j.gpb.2015.05.004. Epub 2015 Dec 8.
23. Association study of four variants in KCNQ1 with type 2 diabetes mellitus and premature coronary artery disease in a Chinese population / Z. Chen, X. Zhang, G. Ma, Q. Qian, Y. Yao // Mol. Biol. Rep. — 2010. — Vol. 37(1). — P. 207-12. — doi: 10.1007/s11033-009-9597-0. Epub 2009 Jul 3.
24. Singh S. The geneticsoftype 2 diabetesmellitus: A review / S. Singh // J. Sci. Res. — 2011. — Vol. 55. — P. 35-48.
25. Pranavchand R. Genomics era and complex disorders: Implications of GWAS with special reference to coronary artery disease, type 2 diabetes mellitus, and cancers / R. Pranavchand, B.M. Reddy // J. Postgrad. Med. — 2016. — Vol. 62(3). — P. 188-98. — doi: 10.4103/0022-3859.186390.
26. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes / S.F. Grant, G. Thorleifsson, I. Reynisdottir [et al.] // Nat. Genet. — 2006. — Vol. 38(3). — P. 320-3.
27. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis / Y. Tong, Y. Lin, Y. Zhang [et al.] // BMC Med. Genet. — 2009. — Vol. 10. — P. 15. — doi: 10.1186/1471-2350-10-15.
28. Ali O. Genetics of type 2 diabetes / O. Ali // World J. Diabetes. — 2013. — Vol. 4(4). — P. 114-23.
29. Adipocyte nuclei captured from VAT and SAT / S. Ambati, P.Yu, E.C. McKinney [et al.] // BMC Obes. — 2016. — Vol. 3. — P. 35. — doi: 10.1186/s40608-016-0112-6. eCollection 2016.
30. Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 / Yates T., Davies M., Henson J. [et al.] // Diabetes. PLoS One. — 2015. — Vol. 10(5). — P. e0124062. — doi: 10.1371/journal.pone.0124062. eCollection 2015.
31. Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus / V. Tavares, R.D. Hirata, A.C. Rodrigues [et al.] // Diabetes Obes. Metab. — 2005. — Vol. 7(5). — P. 605-11.
32. Tönjes A. The role of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma in diabetes risk / A. Tönjes, M. Stumvoll // Curr. Opin. Clin. Nutr. Metab. Care. — 2007. — Vol. 10(4). — P. 410-4.
33. Stumvoll M. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism / M. Stumvoll, H. Häring // Diabetes. — 2002. — Vol. 51(8). — P. 2341-7.
34. Celi F.S. The role of peroxisome proliferator-activated receptor gamma in diabetes and obesity / F.S. Celi, A.R. Shuldiner // Curr. Diab. Rep. — 2002. — Vol. 2(2). — P. 179-85.
35. Association of Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor gamma 2 (PPARγ2) Gene with Type 2 Diabetes Mellitus in Ethnic Kashmiri Population / M. Majid, A. Masood, S.A. Kadla, I. Hameed, B.A. Ganai // Biochem. Genet. — 2017. — Vol. 55(1). — P. 10-21. — doi: 10.1007/s10528-016-9765-6. 
36. The Pro12Ala polymorphism of PPARgamma2 gene and susceptibility to type 2 diabetes mellitus in a Polish population / M.T. Malecki, J. Frey, T. Klupa [et al.] // Diabetes Res. Clin. Pract. — 2003. — Vol. 62(2). — P. 105-11.
37. Genotype Phenotype Correlation of Genetic Polymorphism of PPAR Gamma Gene and Therapeutic Response to Pioglitazone in Type 2 Diabetes Mellitus — A Pilot Study / S.S. Priya, R. Sankaran, S. Ramalingam, T. Sairam, L.S. Somasundaram // J. Clin. Diagn. Res. — 2016. — Vol. 10(2). — P. FC11-4. — doi: 10.7860/JCDR/2016/16494.7331. Epub 2016 Feb 1.
38. The Pro12Ala polymorphism in the PPAR-γ2 gene is not associated to obesity and type 2 diabetes mellitus in a Came–roonian population / E.P. Mato, P.E. Pokam-Fosso, B. Atogho-Tiedeu [et al.] // BMC Obes. — 2016. — Vol. 3. — P. 26. — doi: 10.1186/s40608-016-0104-6. eCollection 2016.
39. Genetic polymorphisms associated with overweight and obesity in uncontrolled Type 2 diabetes mellitus / N.B. Kasim, H.Z. Huri, S.R. Vethakkan, L. Ibrahim, B.M. Abdullah // Biomark Med. — 2016. — Vol. 10(4). — P. 403-15. — doi: 10.2217/bmm-2015-0037. Epub 2016 Mar 21.
40. The Pro12Ala polymorphism of the PPARG gene is not associated with the metabolic syndrome in an urban population of middle-aged Swedish individuals / M. Montagnana, C. Fava, P.M. Nilsson [et al.] // Diabet. Med. — 2008. — Vol. 25(8). — P. 902-8. — doi: 10.1111/j.1464-5491.2008.02510.x.
41. Pro12Ala polymorphism of the peroxisome proliferator activated receptor-gamma gene is associated with metabolic syndrome and surrogate measures of insulin resistance in healthy men: interaction with smoking status / M.L. Tellechea, F. Aranguren, M.S. Pérez, G.E. Cerrone, G.D. Frechtel, M.J. Taverna // Circ. J. — 2009. — Vol. 73(11). — P. 2118-24. Epub 2009 Sep 10.
42. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis / E.A. Sokolova, I.A. Bondar, O.Y. Shabelnikova,
O.V. Pyankova, M.L. Filipenko // PLoS One. — 2015. — Vol. 10(5). — P. e0124662. — doi: 10.1371/journal.pone.0124662. eCollection 2015.
43. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region / J.C. Florez, N. Burtt,  P. de Bakker. [et al.] // Diabetes. — 2004. — Vol. 53(5). — P. 1360-8.
44. Identification of ABCC8 as a contributory gene to impaired early-phase insulin secretion in NZO mice / S. Andrikopoulos, B.C. Fam, A. Holdsworth [et al.] // J. Endocrinol. — 2016. — Vol. 228(1). — P. 61-73. — doi: 10.1530/JOE-15-0290. Epub 2015 Oct 22.
45. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus / P. Haghvirdizadeh, Z. Mohamed, N.A. Abdullah, P. Haghvirdizadeh, M.S. Haerian, B.S. Haerian // J. Diabetes Res. — 2015. — Vol. 2015. — P. 908152. — doi: 10.1155/2015/908152. Epub 2015 Sep 13.
46. High Incidence of Heterozygous ABCC8 and HNF1A Mutations in Czech Patients With Congenital Hyperinsulinism / K. Rozenkova, J. Malikova, A. Nessa [et al.] // J. Clin. Endocrinol. Metab. — 2015. — Vol. 100(12). — P. E1540-9. — doi: 10.1210/jc.2015-2763. Epub 2015 Oct 2.
47. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation / J.P. Martinez Barbera, M. Clements, P. Thomas [et al.] // Development. — 2000. — Vol. 127(11). — P. 2433-45. — PMID 10804184.
48. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors / M. Rothova, J.J. Hölzenspies, A. Livigni, S.N. Villegas, J.M. Brickman // Curr. Protoc. Stem. Cell. Biol. — 2016. — Vol. 36. — P. 1G.3.1-12. — doi: 10.1002/9780470151808.sc01g03s36.
49. The diabetes gene Hhex maintains δ-cell differentiation and islet function / J. Zhang, L.B. McKenna, C.W. Bogue, K.H. Kaestner // Genes. Dev. — 2014. — Vol. 28(8). — P. 829-34. — doi: 10.1101/gad.235499.113.
50. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity / A.S. Dimas, V. Lagou, A. Barker [et al.]; MAGIC Investigators // Diabetes. — 2014. — Vol. 63(6). — P. 2158-71. — doi: 10.2337/db13-0949. Epub 2013 Dec 2.
51. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans / A. Jonsson, C. Ladenvall, T.S. Ahluwalia [et al.] // Diabetes. — 2013. — Vol. 62(8). — P. 2978-83. — doi: 10.2337/db12-1627. Epub 2013 Apr 4.
52. Understanding Genetic Heterogeneity in Type 2 Diabetes by Delineating Physiological Phenotypes: SIRT1 and its Gene Network in Impaired Insulin Secretion / S. Ali, S. Nafis, P. Kalaiarasan, E. Rai, S. Sharma, R.N. Bamezai // Rev. Diabet. Stud. — 2016. — Vol. 13(1). — P. 17-34. — doi: 10.1900/RDS.2016.13.17. Epub 2016 May 10.
53. Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes / G. Hindy, I.G. Mollet, G. Rukh, U. Ericson, M. Orho-Melander // Genes. Nutr. — 2016. — Vol. 11. — P. 6. — doi: 10.1186/s12263-016-0524-4. eCollection 2016.
54. Genetic variants associated with lean and obese type 2 diabetes in a Han Chinese population: A case-control study / X. Kong, X. Xing, J. Hong, X. Zhang, W. Yang // Medicine (Baltimore). — 2016. — Vol. 95(23). — P. e3841. — doi: 10.1097/MD.0000000000003841.
55. Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models / R. Fan, Y. Wang, C.Y. Chiu [et al.] // Genetics. — 2016. — Vol. 202(2). — P. 457-70. — doi: 10.1534/genetics.115.180869. Epub 2015 Dec 29.
56. The HHEX rs1111875A/G gene polymorphism is associated with susceptibility to type 2 diabetes in the Iranian population / Y. Mansoori, A. Daraei, M.M. Naghizadeh, R. Salehi // Mol. Biol. (Mosk.). — 2015. — Vol. 49(4). — P. 601-9. — doi: 10.7868/S0026898415040126.
57. Ethnic differences in CAPN10 SNP-19 in type 2 diabetes: a North-West Indian case control study and evidence from meta-analysis / R. Sharma, K. Matharoo, R. Kapoor, H. Chopra, A.J. Bhanwer // Genet. Res. (Camb.). — 2013. — Vol. 95(5). — P. 146-55. — doi: 10.1017/S0016672313000207.
58. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes / V. Costa, A. Federico, C. Pollastro [et al.] // Int. J. Mol. Sci. — 2016. — Vol. 17(7). — pii: E1008. — doi: 10.3390/ijms17071008.
59. Pharmacogenomics of Drug Response in Type 2 Diabetes: Toward the Definition of Tailored Therapies? / C. Pollastro, C. Ziviello, V. Costa, A. Ciccodicola // PPAR Res. — 2015. — Vol. 2015. — P. 415149. — doi: 10.1155/2015/415149. Epub 2015 Jun 15.
60. Meta-analysis of the association between four CAPN10 gene variants and gestational diabetes mellitus / J. Cui, X. Xu, S. Yin, F. Chen, P. Li, C. Song // Arch. Gynecol. Obstet. — 2016. — Vol. 294(3). — P. 447-53. — doi: 10.1007/s00404-016-4140-8. Epub 2016 Jun 21.
61. Uma Jyothi K. Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India / K. Uma Jyothi, B.M. Reddy // Meta Gene. — 2015. — Vol. 5. — P. 9-20. — doi: 10.1016/j.mgene.2015.05.001. eCollection 2015.
62. SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico / Y. Loya Mondez, G. Reyes Leal, A. Sonchez Gonzalez [et al.] // Nutr. Hosp. — 2014. — Vol. 31(2). — P. 744-50. — doi: 10.3305/nh.2015.31.2.7729.
63. Association of calpain-10 rs2975760 polymorphism with type 2 diabetes mellitus: a meta-analysis / S.T. Yan, C.L. Li, H. Tian [et al.] // Int. J. Clin. Exp. Med. — 2014. —
Vol. 7(10). — P. 3800-7. eCollection 2014.
64. CAPN10 SNP43 G>A gene polymorphism and type 2 diabetes mellitus in the Asian population: a meta-analysis of 9353 participants / Li Y.Y., Gong G., Geng H.Y. [et al.] // Endocr. J. — 2015. — Vol. 62(2). — P. 183-94. — doi: 10.1507/endocrj.EJ14-0297. Epub 2014 Nov 8.
65. A case-control study on the association of common variants of CAPN10 gene and the risk of type 2 diabetes in an Iranian population / F. Maleki, K. Haghani, S. Shokouhi [et al.] // Clin. Lab. — 2014. — Vol. 60(4). — P. 663-70.
66. The calpain system and diabetes / M. Pandurangan, I. Hwang, C. Orhirbat, Y. Jieun, S.H. Cho // Pathophysiology. — 2014. — Vol. 21(2). — P. 161-7. — doi: 10.1016/j.pathophys.2014.01.003. Epub 2014 Mar 14.
67. Role of calpain-10 in the development of diabetes mellitus and its complications / P. Panico, A.M. Salazar, A.L. Burns, P. Ostrosky-Wegman // Arch. Med. Res. — 2014. — Vol. 45(2). — P. 103-15. — doi: 10.1016/j.arcmed.2014.01.005. Epub 2014 Feb 4.
68. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort / J. Wen, T. Rönn, A. Olsson [et al.] // PLoS One. — 2010. — Vol. 5(2). — P. e9153. — doi: 10.1371/journal.pone.0009153.
69. Association of the polymorphisms of the FTO, KCNJ11, SLC30A8 and CDKN2B genes with type 2 diabetes] / A.G. Nikitin, V.A. Potapov, A.N. Brovkin [et al.] // Biol. (Mosk.). — 2015. — Vol. 49(1). — P. 119-28.
70. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk / D. Campa, M. Pastore, M. Gentiluomo [et al.] // Oncotarget. — 2016. — Vol. 7(35). — P. 57011-57020. — doi: 10.18632/oncotarget.10935.
71. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors / D. Campa, G. Capurso, M. Pastore [et al.] // Sci. Rep. — 2016. — Vol. 6. — P. 39565. — doi: 10.1038/srep39565.
72. Islet biology, the CDKN2A/B locus and type 2 diabetes risk / Y. Kong, R.B. Sharma, B.U. Nwosu, L.C. Alonso // Diabetologia. — 2016. — Vol. 59(8). — P. 1579-93. — doi: 10.1007/s00125-016-3967-7. Epub 2016 May 7.
73. Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans / A. Pal, T.P. Potjer, S.K. Thomsen [et al.] // Diabetes. — 2016. — Vol. 65(2). — P. 527-33. — doi: 10.2337/db15-0602. Epub 2015 Nov 5.
74. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? / S.A. Hannou, K. Wouters, R. Paumelle, B. Staels // Trends Endocrinol. Metab. — 2015. — Vol. 26(4). — P. 176-84. — doi: 10.1016/j.tem.2015.01.008. Epub 2015 Mar 3.
75. A comparison of type 2 diabetes risk allele load between African Americans and European Americans / J.M. Keaton, J.N. Cooke Bailey, N.D. Palmer [et al.] // Hum. Genet. — 2014. — Vol. 133(12). — P. 1487-95. — doi: 10.1007/s00439-014-1486-5.
Epub 2014 Oct 2.
76. Winner’s Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data / Shi J., Park J.H., Duan J. [et al.]; MGS (Molecular Genetics of Schizophrenia) GWAS Consortium; GECCO (The Genetics and Epidemiology of Colorectal Cancer Consortium; GAME-ON/TRICL (Transdisciplinary Research in Cancer of the Lung) GWAS Consortium; PRACTICAL (PRostate cancer AssoCiation group To Investigate Cancer Associated aLterations) Consortium; Pan–Scan Consortium; GAME-ON/ELLIPSE Consortium // PLoS Genet. — 2016. — Vol. 12(12). — P. e1006493. — doi: 10.1371/journal.pgen.1006493. eCollection 2016.
77. Billings L.K. The genetics of type 2 diabetes: what have we learned from GWAS? / L.K. Billings, J.C. Florez // Ann. N. Y. Acad. Sci. — 2010. — Vol. 1212. — P. 59-77.
78. Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype / J. Rohayem, C. Ehlers, B. Wiedemann [et al.]; Wolfram Syndrome Diabetes Writing Group // Diabetes Care. — 2011. — Vol. 34(7). — P. 1503-10. — doi: 10.2337/dc10-1937. Epub 2011 May 20.
79. Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans / J. Long, T. Edwards, L.B. Signorello [et al.] // Am. J. Epidemiol. — 2012. — Vol. 176(11). — P. 995-1001. — doi: 10.1093/aje/kws176. Epub 2012 Nov 9.
80. Association between TCF7L2 Polymorphisms and Gestational Diabetes Mellitus: a Meta-Analysis / S. Chang, Z. Wang, L. Wu [et al.] // J. Diabetes Investig. — 2016. — doi: 10.1111/jdi.12612. [Epub ahead of print]
81. Association of TCF7L2 and GCG Gene Variants with Insulin Secretion, Insulin Resistance, and Obesity in New-onset Diabetes / L. Zhang, M. Zhang, J.J. Wang [et al.] // Biomed. Environ. Sci. — 2016. — Vol. 29(11). — P. 814-817. — doi: 10.3967/bes2016.108.
82. Correlation of the TCF7L2 (rs7903146) polymorphism with an enhanced risk of type 2 diabetes mellitus: a meta-analysis / Y. Guan, L.H. Yan, X.Y. Liu, X.Y. Zhu, S.Z. Wang, L.M. Chen // Genet. Mol. Res. — 2016. — Vol. 15(3). — doi: 10.4238/gmr.15037969.
83. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry / Zhao Z., Wen W., Michailidou K. [et al.] // Cancer Causes Control. — 2016. — Vol. 27(5). — P. 679-93. — doi: 10.1007/s10552-016-0741-6. Epub 2016 Apr 6.
84. Data describing the association between rs266729 polymorphism inadiponectin promoter gene and Type 2 Diabetes Mellitus / S. Erfanian, M. Moradzadeh, K. Solhjoo, A.S. Jahromi // Data Brief. — 2016. — Vol. 9. — P. 1138-1140. eCollection 2016.
85. Interaction between β-hexachlorocyclohexane and ADIPOQ genotypes contributes to the risk of type 2 diabetes mellitus in East Chinese adults / S. Li, X. Wang, L. Yang [et al.] // Sci. Rep. — 2016. — Vol. 6. — P. 37769. — doi: 10.1038/srep37769.
86. Associations between single-nucleotide polymorphisms of ADIPOQ, serum adiponectin and increased type 2 diabetes mellitus risk in Bahraini individuals / F.A. Al Hannan, P.A. O’Farrell, M.P. Morgan, O. Tighe, K.G. Culligan // East Mediterr Health J. — 2016. — Vol. 22(8). — P. 611-618.
87. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians / H.F. Gu, A. Abulaiti, C.G. Ostenson [et al.] // Diabetes. — 2004. — Vol. 53(Suppl. 1). — P. S31-5.
88. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians / F. Vasseur, N. Helbecque, C. Dina [et al.] // Hum. Mol. Genet. — 2002. — Vol. 11(21). — P. 2607-14.
89. Gibson F. Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians / F. Gibson, P. Froguel // Diabetes. — 2004. — Vol. 53(11). — P. 2977-83.
90. Chronomedicine and type 2 diabetes: shining some light on melatonin / A.C. Forrestel, S.U. Miedlich, M. Yurcheshen, S.D. Wittlin, M.T. Sellix // Diabetologia. — 2016. [Epub ahead of print]
91. Peschke E. Experimental and clinical aspects of melatonin and clock genes in diabetes / E. Peschke, I. Bähr, E. Mühlbauer // J. Pineal Res. — 2015. — Vol. 59(1). — P. 1-23. — doi: 10.1111/jpi.12240. Epub 2015 Jun 6.
92. Peschke E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon / E. Peschke, I. Bähr, E. Mühlbauer // Int. J. Mol. Sci. — 2013. — Vol. 14(4). — P. 6981-7015. — doi: 10.3390/ijms14046981.
93. Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators / R. Hardeland // J. Pineal Res. — 2017. — Vol. 62(1). — doi: 10.1111/jpi.12377. Epub 2016 Nov 24.
94. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans / M. Garaulet, P. Gуmez-Abellon, P. Rubio-Sastre, J.A. Madrid, R. Saxena, F.A. Scheer // Metabolism. — 2015. — Vol. 64(12). — P. 1650-7. — doi: 10.1016/j.metabol.2015.08.003. Epub 2015 Aug 14.
95. Zinc-Associated Variant in SLC30A8 Gene Interacts With Gestational Weight Gain on Postpartum Glycemic Changes: A Longitudinal Study in Women With Prior Gestational Diabetes Mellitus / T. Wang, H. Liu, L. Wang [et al.] // Diabetes. — 2016. — Vol. 65(12). — P. 3786-3793. Epub 2016 Sep 6.
96. Chabosseau P. Zinc and diabetes / P. Chabosseau, G.A. Rutter // Arch. Biochem. Biophys. — 2016. — Vol. 611. — P. 79-85. — doi: 10.1016/j.abb.2016.05.022. Epub 2016 Jun 1.
97. Intracellular zinc in insulin secretion and action: a determinant of diabetes risk? / G.A. Rutter, P. Chabosseau, E.A. Bellomo [et al.] // Proc. Nutr. Soc. — 2016. — Vol. 75(1). — P. 61-72.
Epub 2015 Sep 14.
98. Association of SLC30A8 gene polymorphism with type 2 diabetes, evidence from 46 studies: a meta-analysis / M. Fan, W. Li, L. Wang [et al.] // Endocrine. — 2016. — Vol. 53(2). — P. 381-94. — doi: 10.1007/s12020-016-0870-4. Epub 2016 Feb 1.
99. Correlation between protein and mRNA abundance in yeast / S.P. Gygi, Y. Rochon, B.R. Franza, R. Aebersold // Mol. Cell. Biol. — 1999. — Vol. 19(3). — P. 1720-30.
100. Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole body magnetic resonance imaging / S. Lee, F. Norheim, T.M. Langleite [et al.]; Nutri Tech Consortium // Physiol. Rep. — 2016. — Vol. 4(21). — pii: e13019.
101. Selection-, age-, and exercise-dependence of skeletal muscle gene expression patterns in a rat model of metabolic fitness / Y.Y. Ren, L.G. Koch, S.L. Britton [et al.] // Physiol. Genomics. — 2016. — Vol. 48(11). — P. 816-825. — doi: 10.1152/physiolgenomics.00118.2015. Epub 2016 Sep 16.
102. Сахарный диабет от ребенка до взрослого / А.С. Сенаторова, Ю.И. Караченцев, Н.А. Кравчун [и др.]. — Харьков: ХНМУ, 2009. — 260 c.
103. Velho G. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians / G. Velho, P. Froguel // Diabetologia. — 1998. — Vol. 41(12). — P. 1511-1515. — doi: 10.1007/s001250051098.
104. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes / A.L. Gloyn, M.N. Weedon, K.R. Owen [ et al.] // Diabetes. — 2003. — Vol. 52(2). — P. 568-572. — doi: 10.2337/diabetes.52.2.568.
105. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants / L.J. Scott, K.L. Mohlke, L.L. Bonnycastle [et al.] // Science. — 2007. — Vol. 316(5829). — P. 1341-1345.
106. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis / B.F. Voight, L.J. Scott, V. Steinthorsdottir [et al.] // Nat. Genet. — 2010. — Vol. 42(7). — P. 579-589. — doi: 10.1038/ng.609.
107. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome1q21–q24 / N. Vionnet, E.H. Hani, S. Dupont [et al.] // Am. J. Hum. Genet. — 2000. — Vol. 67(6). — P. 1470-1480. — doi: 10.1086/316887.
108. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians / K. Humphreys, C. Wahlestedt, A.J. Brookes, S. Efendic // Diabetes. — 2004. — Vol. 53(1). — P. 31-35.
109. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population / K. Hara, P. Boutin, Y. Mori [et al.] // Diabetes. — 2002. — Vol. 51(2). — P. 536-540. — PMID: 11812766. 
110. Зак К.П., Попова В.В. Предсказание развития сахарного диабета 1-го типа и диагностика его асимптомной фазы с помощью аутоантител к островкам Лангерганса поджелудочной железы у человека задолго до возникновения у него заболевания // Международный эндокринологический журнал. — 2016. — № 7(79). — С. 11-21. — DOI: 10.22141/2224-0721.7.79.2016.86414
111. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians / K. Humphreys, C. Wahlestedt, A.J. Brookes, S. Efendic // Diabetes. — 2004. — Vol. 53(1). — P. 31-35.
112. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population / K. Hara, P. Boutin, Y. Mori [et al.] // Diabetes. — 2002. — Vol. 51(2). — P. 536-540. — PMID: 11812766.
113. Susceptibility genes for insulin resistance and type 2 diabetes / F. Grigorescu, R. Attaoua, E. Ait Mkadem, S. Radian, Cheta D. // Genetics of diabetes. — The Truth Unveiled. Ed Acad Rom, Bucuresti & S. Karger AG, Basel, 2010. — P. 131-192.

Similar articles

Predicting the Risk of Preeclampsia in Pregnant Women with Type 1 Diabetes Mellitus and Concomitant Diabetic Nephropathy: the Role of Genetic Markers
Authors: Avramenko T.V. - State Institution «Institute of Pediatrics, Obstetrics and Gynecology of National Academy of Medical Sciences of Ukraine», Kyiv; Hrybanov A.V. - State Institution «Institute of Pediatrics, Obstetrics and Gynecology of National Academy of Medical Sciences of Ukraine», Kyiv; Municipal Maternity Hospital № 2, Mykolaiv; Rossokha Z.I. - State Institution «Reference Centre for Molecular Imaging of the Ministry of Healthcare of Ukraine», Kyiv, Ukraine
International journal of endocrinology 8 (72) 2015
Date: 2016.02.11
Categories: Endocrinology
Sections: Clinical researches
Рharmacogenetic Aspects of Metformin Action in Patients with Type 2 Diabetes Mellitus
Authors: Пасєчко Н.В., Олещук О.М., Лой Г.Я.
ДВНЗ «Тернопільський державний медичний університет імені І.Я. Горбачевського МОЗ України», м. Тернопіль, Україна

International journal of endocrinology 8 (80) 2016
Date: 2017.01.12
Categories: Endocrinology
Sections: Specialist manual
Role of genetic factors in the development of diabetic distal symmetric polyneuropathy (review of literature and own researches)
Authors: Зорій І.А., Пашковська Н.В.
Вищий державний навчальний заклад України «Буковинський державний медичний університет», м. Чернівці, Україна

International journal of endocrinology Том 14, №4, 2018
Date: 2018.08.27
Categories: Endocrinology
Sections: Specialist manual
Clinical Significance of Excess Lactose in the Diet (Part 2)
Authors: Abaturov O.Ye., Nikulina A.O. - State Institution «Dnipropetrovsk Medical Academy of the Ministry of Healthcare of Ukraine», Dnipropetrovsk, Ukraine
"Child`s Health" 2 (70) 2016
Date: 2016.05.19
Categories: Pediatrics/Neonatology
Sections: Specialist manual

Back to issue