Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

International journal of endocrinology Том 13, №5, 2017

Back to issue

Aldosterone synthase gene polymorphism in alimentary obesity, metabolic syndrome components, some secondary forms of arterial hypertension, pathology of the adrenals glands core (literature review)

Authors: Коваль С.Н., Милославский Д.К., Снегурская И.А., Мысниченко О.В., Пенькова М.Ю.
ГУ «Национальный институт терапии имени Л.Т. Малой НАМН Украины», г. Харьков, Украина

Categories: Endocrinology

Sections: Specialist manual

print version


В огляді подано дані літератури про патогенетичну роль альдостерону, рівнів альдостеронсинтази і поліморфізмів гена даного ферменту при аліментарному ожирінні, наявності компонентів метаболічного синдрому, у хворих на вторинні форми артеріальної гіпертензії, при патології кори надниркових залоз й інших ендокринних порушеннях. Ген альдостеронсинтази становить собою перспективний кандидатний ген у європейській і азіатській популяції при метаболічному синдромі, цукровому діабеті, аліментарному ожирінні, деяких вторинних формах артеріальної гіпертензії, патології кори наднирників, діабетичній нефропатії, гестаційній гіпертензії. Генотипування поліморфізмів гена альдостеронсинтази може допомогти в диференціально-діагностичних алгоритмах у хворих зі вторинними формами артеріальної гіпертензії, пухлинами наднирників, первинним і вторинним гіперальдостеронізмом. Розглядаються перспективи терапевтичного використання інгібіторів альдостеронсинтази серед різних категорій хворих з ознаками артеріальної гіпертензії, ожиріння й ендокринними порушеннями.

В обзоре представлены данные литературы о патогенетической роли альдостерона, уровней альдостеронсинтазы и полиморфизмов гена данного фермента при алиментарном ожирении, наличии компонентов метаболического синдрома, у больных некоторыми вторичными формами артериальной гипертензии, при патологии коры надпочечников и других эндокринных нарушениях. Ген альдостеронсинтазы представляет собой перспективный кандидатный ген в европейской и азиатской популяции при метаболическом синдроме, сахарном диабете, алиментарном ожирении, ряде вторичных форм артериальной гипертензии, патологии коры надпочечников, диабетической нефропатии, гестационной гипертензии. Генотипирование полиморфизмов гена альдостеронсинтазы может помочь в дифференциально-диагностических алгоритмах у больных с вторичными формами артериальной гипертензии, опухолями надпочечников, первичным и вторичным гиперальдостеронизмом. Рассматриваются перспективы терапевтического использования ингибиторов альдостеронсинтазы среди различных категорий больных с признаками артериальной гипертензии, ожирения и эндокринными нарушениями.

Hormonal factors of adrenal origin belong to the pathophysiological mechanisms of the formation and progression of arterial hypertension (AH) and should be consi­dered while developing differentiated approaches to the treatment and prevention of hypertensive states, their primary, secondary and resistant forms. The first thing we should point up is aldosterone (AL), enzyme aldosterone synthase (AS), which takes a direct part in the formation of this hormone, as well as gene polymorphisms of AS, which have not only molecular genetic, but also differential diagnostic and therapeutic significance for secondary forms of arterial hypertension, abdominal obesity (AO), metabolic syndrome (MS), adrenal pathology and other endocrine disorders. AL is a steroid (mineralocorticoid) hormone of the adrenal cortex, which is synthesized from cholesterol (CH), mainly in the glomerular zone of the adrenal glands, is released under the action of angiotensin II (A II) and potassium ions (K+). AL acti­vity is mediated through the corresponding mineralocorticoid receptors (MKR). The particular importance in AH and MS development belongs to AL activation and MKR density in adipocytes, this phenomenon is accompanied by increased expression of pro-inflammatory cytokines, leptin, an adipogenic effect, and the inhibition of MCR activity is accompanied by increased production of adiponectin, which is more pronounced in patients with AH. Aldosterone synthase, a mitochondrial human enzyme encoded by the CYP11B2 gene (cytochrome P450, family 11, subfamily B, polypeptide 2) is located on the 8th chromosome. AS belongs to the superfamily of cytochrome P450 and regulates the synthesis of AL hormone. The CYP11B2 gene encodes the key enzyme for the synthesis of AL 18-hydroxylase. In scientific papers, single nucleotide polymorphism (SNP) of AS gene is often studied, such as 5312T, Intron 2, Lys-173/Arg; T-344C, 3097 C/A. 227 SNP of the AS gene were identified in different populations. Europeans, Asians, Africans and North Americans were among them and were genotyped by CYP11B2. To date, there is ample evidence that fatty tissue (FT), apart from a source of energy, is an active endocrine organ that plays a key role in maintaining homeostasis and participating in the pathogenesis of a number of diseases. Its excess is accompanied by hyperactivation of tissue renin-angiotensin-aldosterone system (RAAS), strengthening of local and systemic synthesis of AL and the emergence of secondary aldosteronism. AL, in its turn, has a direct effect on FT due to increased MKR density expressed on adipocytes surface, leading to acceleration in the maturation of the latter and a further increase in FT. Getting into the systemic blood circulation and effecting other organs, the excess AL promotes the development of insulin resistance, atherosclerosis, the progression of systemic inflammatory reactions. MKR activation in FT plays not only the key role in sodium reabsorption by kidneys and the control of BP, but also in the differentiation of preadipocytes into mature adipocytes in FT, induction of inflammation and hyperproduction of cytokines — tumor necrotic factor alpha (TNF-α), monocyte chemotactic protein (MCP-1) and interleukin 6 (IL-6) in the white FT, a decrease in the thermogenic activity and trans­cription of the uncoupling protein-1 (UCP-1) in brown FT. MCR hyperactivation was detected in mice with AO (obese db/db mice), associated with increased BMI in humans and contributes to the development of IR and associated with AO cardiovascular diseases. The gene polymorphism of AS may be a marker of aggravated pregnancy, the presence of gestational hypertension or pre-eclampsia. Some studies found that AS gene polymorphism can affect plasma glucose levels. AS gene polymorphism was not associated with the progression of diabetic nephropathy (DN), but is associated with AH in persons with type 2 diabetes mellitus. National authors conclude about the association of the genotype TT(-344) of the gene CYP11B2 with the risk of MS among residents of the North-West region of Russia. The carrier of 344T allele of AS gene in patients with AO was associated with an increased risk
of hypertension development. The features of AS gene polymorphism and blood levels in acromegaly have been stu­died, and the allelic polymorphism of AS and chymase genes (CMA) has been analyzed to identify the possible association of alleles of these genes with secondary hypertension and hyperaldosteronism in Russians. The congenital defects of the enzymatic activity of AS are of undoubted interest. AS gene is a promising candidate gene in the European and Asian populations for a number of secondary forms of hypertension, MS, diabetes mellitus, abdominal obesity, renal pathology, diabe­tic nephropathy, gestational hypertension. Genotyping of AS gene polymorphisms can be useful in differential diagnostic in patients with secondary forms of arterial hypertension, hypertension with low plasma renin activity, renovascular and resistant hypertension, adrenal tumors, primary and secondary hyperaldosteronism, aldosteromas, imaginary excess of mi­neralcorticoids syndrome, congenital hyperplasia of adrenal cortex. The advantages and disadvantages of the therapeutic use of MCR antagonists and the prospects for the administration of aldosterone synthase inhibitors among various categories of patients are considered. Carrying out the genotyping of patients by the CYP11B2 gene before therapy starting will allow take into account the genetic factors of sensitivity to drug in patients with the phenomenon of arterial hypertension and endocrine disorders. New AS inhibitors will not only effectively reduce blood pressure, but also will be able to prevent the development of adverse humoral and hormonal changes, what will prolong the life of patients and will help to reduce the level of total mortality from this pathology.


рівні і поліморфізм гена альдостеронсинтази; ожиріння; метаболічний синдром; вторинна артеріальна гіпертензія; гіперальдостеронізм; інгібітори альдостеронсинтази; огляд

уровни и полиморфизм гена альдостеронсинтазы; ожирение; метаболический синдром; вторичная артериальная гипертензия; гиперальдостеронизм; ингибиторы альдостеронсинтазы; обзор

levels and gene polymorphism of aldosterone synthase; obesity; metabolic syndrome; secondary arterial hypertension; hyperaldosteronism; aldosterone synthase inhibitors; review

For the full article you need to subscribe to the magazine.


1. Vecchiola A., Lagos C.F., Carvajal C.A. et al. Aldosterone production and signaling dysregulation in obesity // Curr. Hypertens. Rep. — 2016. — Vol. 18(3). — P. 20. — doi: 10.1007/s11906-016-0626-9.
2. Jones E.S., Spence D.J, Mcintyre A.D. et al. High Frequency of Variants of Candidate Genes in Black Africans with Low Renin-Resistant Hypertension // Am. J. Hypertens. — 2017. — Vol. 30(5). — P. 478-483. — doi: 10.1093/ajh/hpw167.
3. Alvarez-Madrazo S. Role of genetic variation in regulation of aldosterone biosynthesis / Alvarez-Madrazo S., Connell J.M., Freel E.M. // Endocr. Dev. — 2011. — Vol. 20. — Р. 106-15. 
4. Ruilope L.M. Aldosterone, hypertension, and cardiovascular disease. An endless story / L.M. Ruilope // Hypertens. — 2008. — Vol. 52. — P. 207-215.
5. Sun J. Polymorphisms of three genes (ACE, AGT and CYP11B2) in the renin-angiotensin-aldosterone system are not associated with blood pressure and salt sensitivity: A systema–tic meta-analysis / Sun J., Zhao M., Miao S., Xi B. // Blood Press. — 2016. — Vol. 25(2). — Р. 117-122.
6. Colussi G. Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients / Colussi G., Catena C., Lapenna R. et al. // Diabetes Care. — 2007. — Vol. 30. — Р. 2349-2354.
7. Cooper S.A. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance / Cooper S.A., Whaley-Connell A., Habibi J. et al. // Heart. — 2007. — Vol. 293. — Р. 2009-2023.
8. Brown N.J. Aldosterone and vascular inflammation // Hypertension. — 2008. — Vol. 51. — P. 161-167.
9. Gluba A. Genetic determinants of cardiovascular dise–ase: the renin-angiotensin-aldosterone system, paraoxonases, endothelin-1, nitric oxide synthase and adrenergic receptors / Gluba A., Banach M., Mikhailidis D.P. et al. // In Vivo. — 2009. — Vol. 23(5). — Р. 797-812.
10. Krug A.W., Ehrhart-Bornstein M. Aldosterone and metabolic syndrome. Is increased aldosterone in metabolic syndrome patients an additional risk factor? // Hypertens. — 2008. — Vol. 51. — P. 1252-1260.
11. Kidambi S. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks / Kidambi S., Kotchen J.M., Grim C.E. et al. // Hypertension. — 2007. — Vol. 49. — P. 704-711.
12. Kim Y.R. Association of <i>CYP11B2</i> polymorphisms with metabolic syndrome patients / Kim Y.R., Kim S.H., Kang S.H. et al. // Biomed Rep. — 2014. — Vol. 2(5). — Р. 749-754. 
13. Павлова О.С. Полигенные ассоциации полиморфизма генов ренин-ангиотензин-альдостероновой системы при эссенциальной артериальной гипертензии / Павлова О.С., Огурцова С.Э., Горбат Т.В. // Артериальная гипертензия. — 2016. — Т. 22, № 3. — С. 253-262. — doi: http://dx.doi.org/10.18705/1607-419X-2016-22-3-253-262.
14. Cheng X. Association between aldosterone synthase CYP11B2 polymorphism and essential hypertension in Chinese: a meta-analysis / Cheng X., Xu G. // Kidney Blood Press Res. — 2009. — Vol. 32(2). — Р. 128-140. 
15. Iwai N. Polymorphism of CYP11B2 determines salt sensitivity in Japanese / Iwai N., Kajimoto K., Tomoike H., Takashima N. // Hypertension. — 2007. — Vol. 49(4). — Р. 825-831.
16. Bellili N.M. Associations of the -344 T > C and the 3097 G > A polymorphisms of CYP11B2 gene with hypertension, type 2 diabetes, and metabolic syndrome in a French population / Bellili N.M., Foucan L., Fumeron F. et al. // Am. J. Hypertens. — 2010. — Vol. 23(6). — Р. 660-667. 
17. MacKenzie S.M. Analysis of the Aldosterone Synthase (CYP11B2) and 11β-Hydroxylase (CYP11B1) Genes / Mac–Kenzie S.M., Davies E., Alvarez-Madrazo S. // Methods Mol. Biol. — 2017. — Vol. 1527. — P. 139-150. — doi: 10.1007/978-1-4939-6625-7-11.
18. Freel E.M. Phenotypic consequences of variation across the aldosterone synthase and 11-beta hydroxylase locus in a hypertensive cohort: data from the MRC BRIGHT Study / Freel E.M., Ingram M., Friel E.C. et al. // Clin. Endocrinol. (Oxf). — 2007. — Vol. 67(6). — Р. 832-838. 
19. Zhang G.X. Polymorphisms in CYP11B2 and CYP11B1 genes associated with primary hyperaldosteronism / Zhang G.X., Wang B.J., Ouyang J.Z. et al. // Hypertens Res. — 2010. — Vol. 33(5). — Р. 478-484. 
20. Ма И. С(-344)Т-полиморфизм гена альдостеронсинтазы, риск метаболического синдрома и фибрилляции предсердий у жителей Северо-Западного региона России / Ма И., Улитина А.С., Ионин В.А. и др. // Ученые записки Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. — 2016. — Т. 23, № 2. — С. 46-49. 
21. Ramachandran V. Analysis of renin-angiotensin aldosterone system gene polymorphisms in Malaysian essential hypertensive and type 2 diabetic subjects / Ramachandran V., Ismail P., Stanslas J., Shamsudin N. // Cardiovasc. Diabetol. — 2009. — Vol. 8. — Р. 11. 
22. Pan X. Interaction of the C-344T polymorphism of CYP11b2 gene with body mass index and waist circumference affecting diastolic blood pressure in Chinese Mongolian population / Pan X., Liu Y., Zhang Y. et al. // Blood Press. — 2010. — Vol. 19(6). — Р. 373-379. 
23. Casiglia E. Skinfold thickness and blood pressure across C-344T polymorphism of CYP11B2 gene / Casiglia E., Tikhonoff V., Schiavon L. et al. // J. Hypertens. — 2007. — Vol. 25(9). — Р. 1828-1833.
24. Dinh Cat A.N. Adipocytes, aldosterone and obesity-related hypertension / Dinh Cat A.N., Friederich-Persson M., White A., Touyz R.M. // J. Mol. Endocrinol. — 2016. — Vol. 57(1). — P. 7-21. — doi: 10.1530/JME-16-0025. 
25. Kawarazaki W., Fujita T. The Role of Aldosterone in Obesity-Related Hypertension // Am. J. Hypertens. — 2016. — Vol. 29(4). — P. 415-423. — doi: 10.1093/ajh/hpw003.
26. Ватутин Н.Т. Альдостерон и ожирение: где искать ключ к терапии? / Ватутин Н.Т., Шевелек А.Н., Дегтярева А.Э. // Архив внутренней медицины. — 2016. — № 4(30). — C. 21-29.
27. Borghi F. The adipose tissue and the involvement of the renin-angiotensin-aldosterone system in cardiometabolic syndrome / Borghi F., Sevá-Pessôa B., Grassi-Kassisse D.M. // Cell. Tissue Res. — 2016. — Vol. 366(3). — P. 543-548. 
28. Garg R. Aldosterone and the Mineralocorticoid Receptor: Risk Factors for Cardiometabolic Disorders / Garg R., Adler G.K. // Curr. Hypertens. Rep. — 2015. — Vol. 17(7). — P. 52. — doi: 10.1007/s11906-015-0567-8. 
29. Schütten M.T. The Link Between Adipose Tissue, Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension / Schütten M.T., Houben A.J., de Leeuw P.W., Stehouwer C.D. // Physiology (Bethesda). — 2017. — Vol. 32(3). — P. 197-209. — doi: 10.1152/physiol.00037.2016. 
30. Xing Y. Aldosterone production in human adrenocortical cells is stimulated by high-density lipoprotein 2 (HDL2) through increased expression of aldosterone synthase (CYP11B2) / Xing Y., Cohen A., Rothblat G. et al. // Endocrinology. — 2011. — Vol. 152(3). — P. 751-63. — doi: 10.1210/en.2010-1049. 
31. Matsuda M., Shimomura I. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk / Matsuda M, Shimomura I. // Horm. Mol. Biol. Clin. Investig. — 2014. — Vol. 19(2). — P. 75-88. — doi: 10.1515/hmbci-2014-0001. 
32. Huby A.C. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis / Huby A.C., Antonova G., Groenendyk J. et al. // Circulation. — 2015. — Vol. 132(22). — P. 2134-2145. — doi: 10.1161/CIRCULATIONAHA.115.018226. 
33. Hofmann A. Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes / Hofmann A., Peitzsch M., Brunssen C. et al. // Horm. Metab. Res. — 2017. — Vol. 49(1). — P. 43-49. — doi: 10.1055/s-0042-116157. 
34. Yamashiro T. Calcineurin mediates the angiotensin II-induced aldosterone synthesis in the adrenal glands by up-regulation of transcription of the CYP11B2 gene / Yamashiro T., Kuge H., Zhang J., Honke K. // J. Biochem. — 2010. — Vol. 148(1). — P. 115-23. — doi: 10.1093/jb/mvq037. 
35. Briones A.M. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction / Briones A.M., Nguyen Dinh Cat A., Callera G.E. et al. // Hypertension. — 2012. — Vol. 59(5). — P. 1069-1078. — doi: 10.1161/HYPERTENSIONAHA.111.190223. 
36. Rios F.J. Cholesteryl ester-transfer protein inhibitors stimulate aldosterone biosynthesis in adipocytes through Nox-dependent processes / Rios F.J., Neves K.B., Nguyen Dinh Cat A. et al. // J. Pharmacol. Exp. Ther. — 2015. — Vol. 353(1). — P. 27-34. — doi: 10.1124/jpet.114.221002. 
37. Zhu L. PPARγ co-activator-1α co-activates steroidogenic factor 1 to stimulate the synthesis of luteinizing hormone and aldosterone / Zhu L., Ke Y., Shao D. et al. // Biochem. J. — 2010. — Vol. 432(3). — P. 473-483. —
doi: 10.1042/BJ20100460.
38. Lastra G. Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system / Lastra G., Sowers J.R. // Horm. Mol. Biol. Clin. Investig. — 2013. — Vol. 15(2). — P. 49-57. —
doi: 10.1515/hmbci-2013-0025.
39. Бровин Д.Л. Распределение генотипов и встречаемость аллелей гена альдостеронсинтазы у больных абдоминальным ожирением / Бровин Д.Л., Баженова Е.А., Попов Р.Э. // Ученые записки СПБГМУ им. акад. И.П. Павлова. — 2015. — Т. 22, № 2. — С. 20-23.
40. Li X.M. Association of the aldosterone synthase gene -344T > С polymorphism with essential hypertension and glucose homeostasis: a case-control study in a Han Chinese population / Li X.M., Ling Y., Lu D.R. et al. // Clin. Exp. Pharmacol. Physiol. — 2011. — Vol. 38(9). — Р. 598-604.
41. Ko G.J. Polymorphism of the aldosterone synthase gene is not associated with progression of diabetic nephropathy, but associated with hypertension in type 2 diabetic patients / Ko G.J., Kang Y.S., Lee M.H. et al. // Nephrology (Carlton). — 2008. — Vol. 13(6). — Р. 492-499.
42. Purkait P. Renin Angiotensin Aldosterone System gene polymorphisms in Type 2 Diabetic patients among the Mewari population of Rajasthan / P. Purkait, P.C. Suthar, V.K. Purohit et al. // Int. J. Biol. Med. Res. — 2013. — Vol. 4(2). — Р. 3128-3134.
43. Purkait P. Analysis of Aldosterone Synthase Gene Promoter (-344 C > T) Polymorphism in Indian Diabetic Nephro–pathy Patients / Purkait P., Raychodhury P., Bandhyopadhya S. et al. // J. Diabetes Metab. — 2013. — Vol. 4. — P. 271. — doi: 10.4172/2155-6156.1000271.
44. Ramírez-Salazar M. Relationship of aldosterone synthase gene (C-344T) and mineralocorticoid receptor (S810L) polymorphisms with gestational hypertension / Ramírez-Salazar M., Romero-Gutiérrez G., Zaina S. et al. // J. Hum. Hypertens. — 2011. — Vol. 25(5). — Р. 320-326. 
45. Verlohren S. Immunology in hypertension, preeclampsia, and target-organ damage / Verlohren S., Muller D.N., Luft F.C. // Hypertension. — 2009. — Vol. 54. — P. 439-446.
46. Радьков О.В. Влияние полиморфизма -344T/C гена альдостеронсинтазы на показатели ренин-ангиотензин-альдостероновой системы и вариабельность ритма сердца у беременных с преэклампсией / Радьков О.В., Калинкин М.Н., Заварин В.В. // Бюллетень СО РАМН. — 2012. — Т. 32, № 3. — С. 102-106.
47. Bogacz A. Analysis of the gene polymorphism of aldosterone synthase (CYP11B2) and atrial natriuretic peptide (ANP) in women with preeclampsia / Bogacz A., Bartkowiak-Wieczorek J., Procyk D. et al. // Eur. J. Obstet. Gynecol. Reprod Biol. — 2016. — Vol. 197. — Р. 11-15. 
48. De Vasconcelos D. Aldosterone synthase gene polymorphism is not associated with gestational hypertension or preeclampsia / De Vasconcelos D., Izidoro-Toledo T.C., Sandrim V.C. et al. // Clin. Chim. Acta. — 2009. — Vol. 400(1–2). — Р. 139-141. 
49. Chikhladze N.M. [Comparative genetic analysis of different forms of low-renin arterial hypertension] / Chikhladze N.M., Samedova Kh.F., Sudomoina M.A. et al. // Mol. Biol. (Mosk). — 2008. — Vol. 42(4). — Р. 588-598. 
50. Chikhladze N.M., Samedova Kh.F., Sudomoina M.A. et al. Contribution of CYP11B2, REN and AGT genes in genetic predisposition to arterial hypertension associated with hyperaldosteronism // Kardiologiia. — 2008. — Vol. 48(1). — Р. 37-42. 
51. Самедова Х.Ф. Исследование генетической предрасположенности к низкорениновым формам артериальной гипертонии, протекающей с гиперальдостеронизмом, в сопоставлении с особенностями клинического течения заболевания: Автореф. дис… канд. мед. наук. — М., 2009. — 27 с.
52. Mulatero P., Veglio F., Maffei P. et al. CYP11B2 -344T/C gene polymorphism and blood pressure in patients with acromegaly // J. Clin. Endocrinol. Metab. — 2006. — Vol. 91(12). — P. 5008-5012. 
53. Калита О.В., Парфенов М.Г., Чихладзе Н.М. и др. Анализ аллельного полиморфизма генов альдостеронсинтазы и химазы при некоторых формах гипертензии у русских // www.rgmu.ru/old/theses024.htm
54. Rossi G.P. Primary aldosteronism an update on scree–ning diagnosis and treatment / Rossi G.P., Pessina A.C., Heagerthy A.M. // J. Hypertens. — 2008. — Vol. 26. — P. 613-621.
55. Matrozova J. Fasting plasma glucose and serum lipids in patients with primary aldosteronism. A controlled cross-sectio–nal study / Matrozova J., Steichen O., Amar L. et al. // Hypertens. — 2009. — Vol. 53. — P. 605-612.
56. Алимухамедова Г.А. Генетические аспекты адренальных инциденталом / Алимухамедова Г.А., Халимова З.Ю., Исмаилов С.И. // Международный эндокринологический журнал. — 2010. — № 5(29). — С. 23-28.
57. Ворохобина Н.В. Артериальная гипертензия при заболеваниях коры надпочечников / Ворохобина Н.В., Серебрякова И.П., Галахова Р.К., Баландина К.А. // Лечащий врач. — 2017. — № 3. — С. 21-24.
58. Калинченко Н.Ю. Молекулярно-генетическая верификация изолированной минералокортикоидной недостаточности вследствие дефицита альдостеронсинтазы / Калинченко Н.Ю., Зубкова Н.А., Тюльпаков А.Н. // Проблемы эндокринологии. — 2009. — № 1(55). — С. 28-30. 
59. Li N. Novel mutations in the CYP11B2 gene causing aldosterone synthase deficiency / Li N., Li J., Ding Y. et al. // Mol. Med. Rep. — 2016. — Vol. 13(4). — P. 3127-32. — doi: 10.3892/mmr.2016.4906. 
60. Xu L. Chimeric CYP11B2/CYP11B1 causing 11β-hydroxylase deficiency in Chinese patients with congenital adrenal hyperplasia / Xu L., Xia W., Wu X. et al. // Steroids. — 2015. — Vol. 101. — P. 51-55. — doi: 10.1016/j.steroids.2015.06.002. 
61. Тихонова С.А. Прогностична значущість поліморф–них алельних варіантів гена альдостерон-синтази при артеріальній гіпертензії / Тихонова С.А., Пісковацька В.П. // Одеський медичний журнал. — 2015. — № 5(151). — С. 81-85.
62. Li Y. Effect of CYP11B2 gene -344T/C polymorphism on renin-angiotensin-aldosterone system activity and blood pressure response to hydrochlorothiazide / Li Y., Yang P., Wu S.L. et al. // Zhonghua Yi Xue Yi Chuan Xue Za Zhi. — 2012. — Vol. 29(1). — Р. 68-71. 
63. Karashima S. Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism / Karashima S., Yoneda T., Kometani M. et al. // Hypertens. Res. — 2016. — Vol. 39(3). — P. 133-7. — doi: 10.1038/hr.2015.129. 
64. Morales E. Beneficial long-term effect of aldosterone antagonist added to a traditional blockade of the renin-angiotensin-aldosterone system among patients with obesity and proteinuria / Morales E., Gutiérrez E., Caro J. et al. // Nefrologia. — 2015. — Vol. 35(6). — P. 554-561. — doi: 10.1016/j.nefro.2015.09.008. 
65. Armani A., Cinti F., Marzolla V. et al. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice // FASEB J. — 2014. — Vol. 28(8). — P. 3745-3757. — doi: 10.1096/fj.13-245415.
66. Caprio M., Antelmi A., Chetrite G. et al. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome // Endocrinology. — 2011. — Vol. 152(1). — P. 113-125. — doi: 10.1210/en.2010-0674.
67. Hofmann A. The Aldosterone Synthase Inhibitor FAD286 is Suitable for Lowering Aldosterone Levels in ZDF Rats but not in db/db Mice / Hofmann A., Brunssen C., Peitzsch M. [et al.] // Horm. Metab. Res. — 2017. — Vol. 49(6). — P. 466-471. — doi: 10.1055/s-0043-101821. 
68. Abdel-Magid A.F. Aldosterone synthase inhibitors: targeting chronic kidney disease and diabetic nephropathy // ACS Med. Chem. Lett. — 2013. — Vol. 4(2). — Р. 157-158. 
69. Andersen K. The effects of aldosterone synthase inhibition on aldosterone and cortisol in patients with hypertension: a phase II, randomized, double-blind, placebo-controlled, multicenter study / Andersen K., Hartman D., Peppard T. et al. // J. Clin. Hypertens (Greenwich). — 2012. — Vol. 14(9). — Р. 580-587. 
70. Hu Q. Aldosterone synthase inhibitors as promising treatments for mineralocorticoid dependent cardiovascular and renal diseases / Hu Q., Yin L., Hartmann R.W. // J. Med. Chem. — 2014. — Vol. 57(12). — Р. 5011-5022. 
71. Ménard J. Aldosterone synthase inhibition: cardiorenal protection in animal disease models and translation of hormonal effects to human subjects / Ménard J., Rigel D.F., Watson C. et al. // J. Transl. Med. — 2014. — Vol. 12. — Р. 340. 

Back to issue