Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

International journal of endocrinology Том 14, №1, 2018

Back to issue

Cognitive impairment in patients with type 2 diabetes mellitus: the role of hypoglycemic therapy

Authors: Пашковська Н.В.
Вищий державний навчальний заклад України «Буковинський державний медичний університет», м. Чернівці, Україна

Categories: Endocrinology

Sections: Specialist manual

print version


Summary

У статті наведені дані щодо епідеміології, чинників ризику, механізмів розвитку, клінічних особ­ливостей порушень когнітивних функцій у хворих на цукровий діабет типу 2. Проаналізовані дані літератури щодо залежності частоти й тяжкості когнітивних порушень від типу гіпоглікемізуючої терапії. Наведені результати клінічних та експериментальних досліджень особливостей когнітивних функцій на тлі застосування різних антидіабетичних засобів — бігуанідів, тіазолідиндіонів, меглітинідів, агоністів рецепторів глюкагоноподібного пептиду 1, інгібіторів дипептидилпептидази-4, інгібіторів натрійзалежного котранспортера глюкози 2-го типу та препаратів інсуліну.

В статье представлены данные относительно эпидемиологии, факторов риска, механизмов развития, клинических особенностей нарушений когнитивных функций у больных сахарным диабетом типа 2. Проанализированы данные литературы о зависимости частоты и тяжести когнитивных нарушений от типа гипогликемизирующей терапии. Представлены результаты клинических и экспериментальных исследований особенностей когнитивных функций на фоне применения различных противодиабетических средств — бигуанидов, тиазолидиндионов, меглитинидов, агонистов рецепторов глюкагоноподобного пептида 1, ингибиторов дипептидилпептидазы-4, ингибиторов натрийзависимого котранспортера глюкозы 2-го типа и препаратов инсулина.

The article presents data on epidemiology, risk factors, mechanisms of development, clinical features of cognitive impairment in patients with type 2 diabetes mellitus. The literature data about the dependence of the incidence and severity of cognitive impairment on the type of hypoglycemic therapy are analyzed. As well as the results of clinical and experimental studies concerning the peculiarities of cognitive functions against the background of using various antidiabetic agents — meglitinides, biguanides, thiazolidinediones, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-dependent glucose cotransporter 2 inhibitors and insulin.


Keywords

цукровий діабет типу 2; когнітивні порушення; гіпоглікемізуюча терапія

сахарный диабет типа 2; когнитивные нарушения; гипогликемическая терапия

type 2 diabetes mellitus; cognitive impairment; hypoglycemic therapy


For the full article you need to subscribe to the magazine.


Bibliography

1. Dementia. Fact sheet [Електронний ресурс] // World Health Organization. – 2017. – Режим доступу до ресурсу: http://www.who.int/mediacentre/factsheets/fs362/en/
2. Riederer P., Korczyn A.D., Ali S.S. et al. The diabetic brain and cognition // Journal of Neural Transmission. — 2017. — 124(11). — 1431-1454. PMID 28766040. doi: 10.1007/s00702-017-1763-2 
3. Gudala K., Bansal D., Schifano F., Bhansali A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies // J. of  Diabetes Investigation. — 2013. —  4(6). — 640-650. doi: 10.1111/jdi.12087.
4. Ott A., Stolk R.P., Van harskamp F., Pols H.A., Hofman A., Breteler M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study // Neurology. — 1999. — 53(9). — 1937-42. 
5. Cheng G., Huang C., Deng H., Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies // Intern. Med. J. — 2012. — 42(5). — 484-91. 
6. Samaras K., Sachdev P.S. Diabetes and the elderly brain: sweet memories? // Therapeutic Advances in Endocrinology and Metabolism. — 2012. — 3(6). — 189-196. doi:10.1177/2042018812469645.
7. Dodd G.T., Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis // J. Neuroendocrinol. — 2017. — 29(10). — doi: 10.1111/jne.12513. 
8. Costello D.A., Claret M., Al-Qassab H. et al. Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity / Amédée T., ed. // PLoS ONE. — 2012. — 7(2). — e31124. doi:10.1371/journal.pone.0031124. 
9. Crane P.K., Walker R., Hubbard R.A. et al. Glucose Levels and Risk of Dementia // The New England journal of medicine. — 2013. — 369(6). — 540-548. doi:10.1056/NEJMoa1215740.
10. Abbatecola A.M., Rizzo M.R., Barbieri M., Grella R., Arciello A., Laieta M.T., Acampora R., Passariello N., Cacciapuoti F., Paolisso G. Postprandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics // Neurology. — 2006. — 67. — 235-240. 
11. Laws S.M., Gaskin S., Woodfield A. et al. Insulin resistance is associated with reductions in specific cognitive domains and increases in CSF tau in cognitively normal adults // Scientific Reports. — 2017. — 7. — 9766. doi:10.1038/s41598-017-09577-4.
12. Shukla V., Shakya A.K., Perez-Pinzon M.A., Dave K.R. Cerebral ischemic damage in diabetes: an inflammatory perspective // Journal of Neuroinflammation. — 2017. — 14. — 21. doi:10.1186/s12974-016-0774-5. 
13. Yun J.-S., Ko S.-H. Risk Factors and Adverse Outcomes of Severe Hypoglycemia in Type 2 Diabetes Mellitus // Diabetes & Metabolism Journal. — 2016. — 40(6). — 423-432. doi:10.4093/dmj.2016.40.6.423. 
14. Feinkohl I., Aung P.P., Keller M. et al. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study // Diabetes Care. — 2014. — 37(2). — 507-15. doi: 10.2337/dc13-1384.
15. De Galan B.E., Zoungas S., Chalmers J. et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vas-cular Disease: Preterax and Diamicron Modified Release Con-trolled Evaluation (ADVANCE) trial // Diabetologia. — 2009. — 52(11). — 2328-2336. doi: 10.1007/s00125-009-1484-7.
16. Larry H. Bernstein. Brain and Cognition [Електронний ресурс] / Larry H. Bernstein // Medicine and Life Sciences Scientific Journal. – 2015. – Режим доступу до ресурсу: https://pharmaceuticalintelligence.com/2015/10/14/brain-and-cognition/.
17. De la Monte S.M., Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochemical pharmacology. — 2014. — 88(4). — 548-559. doi: 10.1016/j.bcp.2013.12.012.
18. Derakhshan F., Toth C. Insulin and the brain // Curr. Diabetes Rev. — 2013. — 9(2). — 102-16.
19. Hormonal signaling systems of the brain in diabetes mellitus. Neurodegenerative Diseases / A. Shpakov [et al.] (Ed. R.C.-C. Chang). — Intech Open Access Publisher, Rijeka, Croatia, 2011. — 349-386. doi: 10.5772/28930.
20. Kleinridders A., Ferris H.A., Cai W., Kahn C.R. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function // Diabetes. — 2014. — 63(7). — 2232-2243. doi:10.2337/db14-0568.
21. Williamson J.D., Launer L.J., Bryan R.N. et al. Cognitive Function and Brain Structure in Persons With Type 2 Diabetes Mellitus After Intensive Lowering of Blood Pressure and Lipid Levels: A Randomized Clinical Trial // JAMA internal medicine. — 2014. — 174(3). — 324-333. doi:10.1001/jamainternmed.2013.13656.
22. Wu J.H., Haan M.N., Liang J., Ghosh D., Gonzalez H.M., Herman W.H. Impact of antidiabetic medications on physical and cognitive functioning of older Mexican Americans with diabetes mellitus: a population-based cohort study // Ann. Epidemiol. — 2003. — 13(5). — 369-76. 
23. Weinstock R.S., Teresi J.A., Goland R. et al. Glycemic Control and Health Disparities in Older Ethnically Diverse Underserved Adults With Diabetes: Five-year results from the Informatics for Diabetes Education and Telemedicine (IDEATel) study // Diabetes Care. — 2011. — 34(2). — 274-279. doi:10.2337/dc10-1346.
24. Launer L.J., Miller M.E., Williamson J.D. et al. Effects of randomization to intensive glucose lowering on brain structure and function in type 2 diabetes ACCORD Memory in Diabetes Study // Lancet Neurology. — 2011. — 10(11). — 969-977. doi:10.1016/S1474-4422(11)70188-0. 
25. Griffin S.J., Leaver J.K., Irving G.J. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes // Diabetologia. — 2017. — 60(9). — 1620-1629. doi:10.1007/s00125-017-4337-9.
26. Grzybowska M., Bober J., Olszewska M. Metformin — mecha–nisms of action and use for the treatment of type 2 diabetes mellitus // Postepy Hig. Med. Dosw. (Online). — 2011. — 65. — 277-285. 
27. Wang Y.-W., He S.-J., Feng X. et al. Metformin: a review of its potential indications // Drug Design, Development and Thera–py. — 2017. — 11. — 2421-2429. doi:10.2147/DDDT.S141675.
28. Markowicz-Рiasecka M., Sikora J., Szydłowska A., Skupień A., Mikiciuk-Оlasik E., Huttunen K.M. Metformin — a Future Therapy for Neurodegenerative Diseases // Pharm. Res. — 2017. — 34(12). — 2614-2627. doi: 10.1007/s11095-017-2199-y. 
29. Fatt M., Hsu K., He L. et al. Metformin Acts on Two Diffe–rent Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation // Stem Cell Reports. — 2015. — 5(6). — 988-995. doi:10.1016/j.stemcr.2015.10.014. 
30. Ge X.H., Zhu G.J., Geng D.Q. et al. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats // Physiol. Behav. — 2017. — 170. — 115-123. doi: 10.1016/j.physbeh.2016.12.021. 
31. Pintana H., Apaijai N., Pratchayasakul W., Chattipa–korn N., Chattipakorn S.C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats // Life Sci. — 2012. — 91(11-12). — 409-14. doi: 10.1016/j.lfs.2012.08.017. 
32. Hettich M.M., Matthes F., Ryan D.P. et al. The Anti-Dia–betic Drug Metformin Reduces BACE1 Protein Level by Interfe–ring with the MID1 Complex / Paudel H.K., ed. // PLoS ONE. — 2014. — 9(7). — e102420. doi:10.1371/journal.pone.0102420.
33. Markowicz-Piasecka M., Sikora J., Mateusiak Ł., Mikiciuk-Olasik E., Huttunen K.M. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity // Oxidative Medicine and Cellular Longevity. — 2017. — 2017. — 7303096. doi:10.1155/2017/7303096.
34. Bibi F., Ullah I., Kim M.O., Naseer M.I. Metformin attenuate PTZ-induced apoptotic neurodegeneration in human cortical neuronal cells // Pakistan Journal of Medical Sciences. — 2017. — 33(3). — 581-585. doi:10.12669/pjms.333.11996.
35. Cheng C., Lin C.H., Tsai Y.W., Tsai C.J., Chou P.H., Lan T.H. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis // J. Gerontol. A Biol. Sci Med. Sci. — 2014. — 69(10). — 1299-1305. doi: 10.1093/gerona/glu073.
36. Ng T.P., Feng L., Yap K.B., Lee T.S., Tan C.H., Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes // J. Alzheimers Dis. — 2014. — 41(1). — 61-8. doi: 10.3233/JAD-131901. 
37. Kuan Y.C., Huang K.W., Lin C.L., Hu C.J., Kao C.H. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus // Prog. Neuropsychopharmacol. Biol Psychiatry. — 2017. — 79 (Pt B). — 77-83. doi: 10.1016/j.pnpbp.2017.06.002.
38. Hervás D., Fornés-Ferrer V., Gómez-Escribano A.P. et al. Metformin intake associates with better cognitive function in patients with Huntington’s disease / Palau F., ed. // PLoS ONE. — 2017. — 12(6). — e0179283. doi:10.1371/journal.pone.0179283.
39. Luchsinger J.A., Perez T., Chang H. et al. Metformin in Amnestic Mild Cognitive Impairment: results of a pilot randomi–zed placebo controlled clinical trial // Journal of Alzheimer’s di–sease. — 2016. — 51(2). —501-514. doi:10.3233/JAD-150493.
40. Koenig A.M., Mechanic-hamilton D., Xie S.X. et al. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study // Alzheimer Dis. Assoc. Disord. — 2017. — 31(2). — 107-113. doi: 10.1097/WAD.0000000000000202.
41. Herath P.M., Cherbuin N., Eramudugolla R., Anstey K.J. The Effect of Diabetes Medication on Cognitive Function: Evidence from the PATH Through Life Study // BioMed Research International. — 2016. — 2016. — 7208429. doi:10.1155/2016/7208429. 
42. Imfeld P., Bodmer M., Jick S.S., Meier C.R. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study // J. Am. Geriatr. Soc. — 2012. — 60(5). — 916-921. doi: 10.1111/j.1532-5415.2012.03916.x.
43. Moore E.M., Mander A.G., Ames D. et al. Increased Risk of Cognitive Impairment in Patients With Diabetes Is Associated With Metformin // Diabetes Care. — 2013. — 36(10). — 2981-2987. doi:10.2337/dc13-0229.
44. Tasci I. Metformin: good or bad for the brain? // Ann. Transl. Med. — 2014. — 2(6). — 53. doi: 10.3978/j.issn.2305-5839.2014.06.06
45. Жердева Н. Новая страница в назначении метформина // Практичний лікар. — 2015. — № 1. — С. 65-67. 
46. Глюкофаж XR: новые возможности повышения комплайенса в терапии метформином // Международный эндокринологический журнал. — 2009. — № 4. — С. 71-74.
47. Kravitz E., Schmeidler J., Beeri M.S. Type 2 Diabetes and Cognitive Compromise: Potential Roles of Diabetes-Related The–rapies // Endocrinology and metabolism clinics of North America. — 2013. — 42(3). — 489-501. doi:10.1016/j.ecl.2013.05.009. 
48. Watson G.S., Cholerton B.A., Reger M.A. et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study // Am. J. Geriatr. Psychiatry. — 2005. — 13(11). — 950-8. 
49. Harrington C., Sawchak S., Chiang C. et al. Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer’s disease: two phase 3 studies // Curr. Alzheimer Res. — 2011. — 8(5). — 592-606. 
50. Sato T., Hanyu H., Hirao K., Kanetaka H., Sakurai H., Iwamoto T. Efficacy of PPAR-γ agonist pioglitazone in mild –Alzheimer disease // Neurobiol Aging. — 2011. — 32(9). — 1626-33. doi: 10.1016/j.neurobiolaging.2009.10.009. 
51. Geldmacher D.S., Fritsch T., McClendon M.J., Landreth G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease // Arch. Neurol. — 2011. — 68(1). — 45–50. doi: 10.1001/archneurol.2010.229.
52. Seaquist E.R., Miller M.E., Fonseca V. et al. Effect of thia–zolidinediones and insulin on cognitive outcomes in ACCORD-MIND // Journal of diabetes and its complications. — 2013. — 27(5). — 485-491. doi:10.1016/j.jdiacomp.2013.03.005. 
53. Fu H., Xie W., Curtis B., Schuster D. Identifying factors associated with hypoglycemia-related hospitalizations among elderly patients with T2DM in the US: a novel approach using influential variable analysis // Curr. Med. Res Opin. — 2014. — 29. — 1-7. doi: 10.1185/03007995.2014.922944.
54. Orkaby A.R., Cho K., Cormack J., Gagnon D.R., Dri–ver J.A. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥ 65 years with diabetes // Neurology. — 2017. doi: 10.1212/WNL.0000000000004586.
55. Abbatecola A.M., Bo M., Barbagallo M. et al. Severe hypoglycemia is associated with antidiabetic oral treatment compared with insulin analogs in nursing home patients with type 2 diabetes and dementia: results from the DIMORA study // J. Am. Med. Dir. Assoc. — 2015. — 16(4). — 349. e7-12. doi: 10.1016/j.jamda.2014.12.014. 
56. Thorpe C.T., Gellad W.F., Good C.B. et al. Tight Glycemic Control and Use of Hypoglycemic Medications in Older Vete–rans With Type 2 Diabetes and Comorbid Dementia // Diabetes Care. — 2015. — 38(4). — 588-595. doi:10.2337/dc14-0599.
57. Cai X.-S., Tan Z.-G., Li J.-J. et al. Glucagon-Like Peptide-1 (GLP-1) Treatment Ameliorates Cognitive Impairment by Attenuating Arc Expression in Type 2 Diabetic Rats // Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. — 2017. — 23. — 4334-4342. doi:10.12659/MSM.903252.
58. Li Y., Duffy K.B., Ottinger M.A. et al. GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease // Journal of Alzheimer’s disease. — 2010. — 19(4). — 1205-1219. doi:10.3233/JAD-2010-1314. 
59. Velmurugan K., Bouchard R., Mahaffey G. et al. Neuroprotective actions of glucagon-like peptide-1 in differentiated human neuroprogenitor cells // J. Neurochem. — 2012. — 123. — 919-931. doi: 10.1111/jnc.12036 
60. Hansen H.H., Fabricius K., Barkholt P. et al. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Di–sease / Padmanabhan J., ed. // PLoS ONE. — 2016. — 11(7). — e0158205. doi:10.1371/journal.pone.0158205.
61. Kosaraju J., Holsinger R.M., Guo L., Tam K.Y. Linagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Mitigates Cognitive Deficits and Pathology in the 3xTg-AD Mouse Model of Alzhei–mer’s Disease // Mol. Neurobiol. — 2017. — 54(8). — 6074-6084.
62. Jain S., Sharma B. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia // Physiol. Behav. — 2015. — 152(Pt A). — 182-93. doi: 10.1016/j.physbeh.2015.09.007. 
63. Lin B., Koibuchi N., Hasegawa Y. et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice // Cardiovascular Diabetology. — 2014. — 13. — 148. doi: 10.1186/s12933-014-0148-1.
64. Rizvi S.M., Shakil S., Biswas D. et al. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer’s disease - diabetes type 2 linkage via an enzoinformatics study // CNS Neurol. Disord. Drug Targets. — 2014. — 13(3). — 447-51.
65. Shaikh S., Rizvi S.M., Shakil S., Riyaz S., Biswas D., Jahan R. Forxiga (dapagliflozin): Plausible role in the treatment of diabetes-associated neurological disorders // Biotechnol. Appl. Biochem. — 2016. — 63(1). — 145-50. doi: 10.1002/bab.1319.
66. Sanguanmoo P., Tanajak P., Kerdphoo S. et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenu-ating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats // Toxicol. Appl. Pharmacol. — 2017. — 333. — 43-50. doi: 10.1016/j.taap.2017.08.005.
67. Plastino M., Fava A., Pirritano D. et al. Effects of insu-linic therapy on cognitive impairment in patients with Alzheimer disease and diabetes mellitus type-2 // J. Neurol. Sci. — 2010. — 288(1–2). — 112-6. doi: 10.1016/j.jns.2009.09.022.
68. Beeri M.S., Schmeidler J., Silverman J.M. et al. Insu-lin in combination with other diabetes medication is associated with less Alzheimer neuropathology // Neurology. — 2008. — 71(10). — 750-757. doi: 10.1212/01.wnl.0000324925.95210.6d.
69. Craft S., Baker L.D., Montine T.J. et al. Intranasal In-sulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment // Archives of Neurology. — 2012. — 69(1). — 29-38. doi: 10.1001/archneurol.2011.233.
70. Akyol A., Kiylioglu N., Bolukbasi O., Guney E., Yurekli Y. Repeated hypoglycemia and cognitive decline. A case report // Neuro Endocrinol. Lett. — 2003. — 24(1–2). — 54-6.
71. Hambling C.E., Seidu S.I., Davies M.J., Khunti K. Older people with Type 2 diabetes, including those with chronic kidney disease or dementia, are commonly overtreated with sulfonylurea or insulin therapies // Diabet. Med. — 2017. — 34(9). — 1219-1227. doi: 10.1111/dme.13380.

Back to issue