Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

International neurological journal №5 (99), 2018

Back to issue

Extended clinical and laboratory phenotype in genetically determined folate cycle deficiency in children with autism spectrum disorders

Authors: Мальцев Д.В.
Институт экспериментальной и клинической медицины Национального медицинского университета имени А.А. Богомольца, г. Киев, Украина

Categories: Neurology

Sections: Clinical researches

print version


Summary

Актуальність. Генетичний дефіцит ферментів фолатного циклу розглядається на сьогодні як одна з поширених причин розладів аутистичного спектра в дітей, однак зв’язок між генетичними поломками і компонентами клінічного фенотипу охарактеризований недостатньо. Є ряд доказів участі імунної системи в патогенезі таких розладів, включаючи асоціацію з імунодефіцитами, випадки розвитку аутизму після нейроінфекцій і автоімунних енцефалітів, ефективність імунотерапії. Мета дослідження: оцінити розширений клініко-лабораторний фенотип при розладах аутистичного спектра, асоційованих із генетично детермінованим дефіцитом фолатного циклу. Матеріали та методи. У проспективному контрольованому одноцентровому дослідженні брали участь 78 дітей із діагнозом розладів психіки аутистичного спектра і/або дитячого церебрального паралічу. Це були пацієнти з різних регіонів України віком від 2 до 10 років, 47 хлопчиків і 31 дівчинка. Контрольну групу становили 34 здорові дитини зі схожим віковим і гендерним розподілом. Проводили ідентифікацію поліморфізмів генів фолатного циклу (ПЛР), комплексне імунологічне обстеження, діагностику інфекцій (ПЛР, серологічні тести, мікробіологічний метод), визначення біомаркерів (біохімічні методи). З метою встановлення вірогідності відмінностей результатів застосовували T-критерій Стьюдента з розрахунком коефіцієнта довірчої ймовірності р (параметричний критерій) і числа знаків Z за Урбахом (непараметричний критерій). Для вивчення зв’язку між поліморфізмами генів фолатного циклу і показниками імунного статусу використовували критерій хі-квадрат (χ2) Пірсона. Результати. Дефіцит NK- і/або NKT-клітин відзначався в досліджуваній групі в 91 % випадків, тобто був специфічною ознакою, на той час як серед здорових дітей контрольної групи аналогічний імунофенотип мав місце лише в 27 % випадків, причому зазвичай відзначалося незначне зниження кількості клітин (p < 0,05; Z < Z0,05). Дефіцит NK- і NKT-клітин був тісно асоційований з наявністю поліморфізмів у генах ферментів фолатного циклу (χ2 = 51,1; р = 0,01), а також продемонстрував менш виражений, але статистично значущий зв’язок з дефіцитом мієлопероксидази фагоцитів (р = 0,05). Показана аномально знижена резистентність пацієнтів досліджуваної групи до вірусних агентів: лімфотропних герпесвірусів, вірусу кору і краснухи, ротавирусів, яку можна пояснити виявленим імунодефіцитом. Охарактеризований пов’язаний з цим розширений клінічний фенотип, який включає, окрім ­аутистичних розладів, інші імунозалежні ураження: хронічні вірусні інфекції, скроневий медіанний склероз і скроневу медіанну епілепсію (46 %), PANDAS (27 %), рухові розлади (20 %), алергію (32 %) і кишковий синдром (88 % випадків). Лейкоенцефалопатія, особливо залучення перивентрикулярних зон тім’яних часток, пов’язана з нейроінфекціями і автоімунними реакціями, була основною формою ураження центральної нервової системи (96 % випадків). Висновки. Існують підстави говорити про розширений клініко-лабораторний фенотип у дітей з генетичним дефіцитом фолатного циклу, асоційованим з розладами аутистичного спектра, що вказує на доцільність мультидисциплінарного підходу до ведення таких пацієнтів з обов’язковим залученням клінічного імунолога.

Актуальность. Генетический дефицит ферментов фолатного цикла рассматривается на сегодняшний день как одна из распространенных причин расстройств аутистического спектра у детей, однако связь между генетическими поломками и компонентами клинического фенотипа охарактеризована недостаточно. Есть ряд доказательств участия иммунной системы в патогенезе таких расстройств, включая ассоциации с иммунодефицитами, случаи развития аутизма после нейроинфекций и аутоиммунных энцефалитов, эффективность иммунотерапии. Цель исследования: оценить расширенный клинико-лабораторный фенотип при расстройствах аутистического спектра, ассоциированных с генетически детерминированным дефицитом фолатного цикла. Материалы и методы. В проспективном контролируемом одноцентровом исследовании принимали участие 78 детей с диагнозом расстройств психики аутистического спектра и/или детского церебрального паралича. Это были пациенты из разных регионов Украины в возрасте от 2 до 10 лет, 47 мальчиков и 31 девочка. Контрольную группу (КГ) составили 34 здоровых ребенка с похожим возрастным и гендерным распределением. Проводили идентификацию полиморфизмов генов фолатного цикла (методом полимеразной цепной реакции (ПЦР)), комплексное иммунологическое обследование, диагностику инфекций (ПЦР, серологические тесты, микробиологический метод), определение биомаркеров (биохимические методы). С целью установления достоверности различий результатов применяли T-критерий Стьюдента с расчетом коэффициента доверительной вероятности р (параметрический критерий) и числа знаков Z по Урбаху (непараметрический критерий). Для изучения связи между полиморфизмом генов фолатного цикла и показателями иммунного статуса использовали критерий хи-квадрат (χ2) Пирсона. Результаты. Дефицит NK- и/или NKT-клеток отмечался в исследуемой группе в 91 % случаев, то есть был специфическим признаком, в то время как среди здоровых детей КГ аналогичный иммунофенотип имел место только в 27 % случаев, причем обычно отмечалось незначительное снижение количества клеток (p < 0,05; Z < Z0,05). Дефицит NK- и NKT-клеток был тесно ассоциирован с наличием полиморфизмов в генах ферментов фолатного цикла (χ2 = 51,1; р = 0,01), а также продемонстрировал менее выраженную, но статистически значимую связь с дефицитом миелопероксидазы фагоцитов (р = 0,05). Показана аномально сниженная резистентность пациентов исследуемой группы к вирусным агентам: лимфотропным герпесвирусам, вирусу кори и краснухи, ротавирусу, что можно объяснить выявленным иммунодефицитом. Охарактеризован связанный с этим расширенный клинический фенотип, который включает, кроме аутистических расстройств, другие иммунозависимые поражения: хронические вирусные инфекции, височный медианный склероз и височную медианную эпилепсию (46 % случаев), PANDAS (27 %), двигательные расстройства (20 %), аллергию (32 %) и кишечный синдром (88 %). Лейкоэнцефалопатия, особенно поражение перивентрикулярных зон теменных долей, связанная с нейроинфекциями и аутоиммунными реакциями, была основной формой поражения центральной нервной системы (96 % случаев). Выводы. Имеются основания говорить о расширенном клинико-лабораторном фенотипе у детей с генетическим дефицитом фолатного цикла, ассоциированным с расстройствами спектра аутизма, что указывает на необходимость мультидисциплинарного подхода к ведению таких пациентов с обязательным подключением клинического иммунолога.

Background. The genetic deficiency of folate cycle enzymes is considered today as one of the common causes of autism spectrum disorders in children, but the relationship between the genetic components of failures and clinical phenotype was not characterized enough. There is some evidence of immune system involvement in the pathogenesis, including association with immunodeficiencies, cases of autism after neuroinfections and autoimmune encephalitis, the effectiveness of immunotherapy. The purpose was to evaluate the extended clinical and laboratory phenotype in patients with autism spectrum disorders associated with genetically determined deficiency of folate cycle. Materials and methods. A prospective, controlled, single-center study included 78 children diagnosed with autism spectrum disorders and/or cerebral palsy. These were patients from different regions of Ukraine, aged 2 to 10 years, 47 boys and 31 girls. Control group consisted of 34 healthy children with the same age and gender distribution. The identification of gene polymorphisms of folate cycle by polymerase chain reaction, a comprehensive immunological study, diagnosis of infection (polymerase chain reaction, serological tests, microbiological method), determination of biomarkers (biochemical methods) were performed. In order to establish the significant differences of the results, Student’s T-test was used with the calculation of confidence coefficient p (parametric test) and the number of Z signs by Urbach (nonparametric). To study the relationship between polymorphisms of folate cycle genes and the immune status, the Pearson’s chi-squared test (χ2) was used. Results. The deficiency of NK- and/or NKT-cells was observed in the study group in 91 % of cases, while among healthy children from the control group, similar immunophenotype occurred only in 27 % of cases, and usually there was a slight decrease in the number of cells (p < 0.05; Z < Z0.05). Deficiency of NK- and NKT-cells was closely associated with the presence of polymorphisms in the genes of folate cycle enzymes (χ2 = 51.1; p = 0.01), as well as demonstrated less pronounced but statistically significant correlation with myeloperoxidase deficiency (p = 0.05). An abnormally reduced resistance to viral agents was shown: lymphotropic herpesviruses, measles and rubella, rotavirus, which can be explained by the immune deficiency. Associated extensive clinical phenotype is characterized that include, in addition to autistic disorders, other immunodependent lesions: chronic viral infections, mesial temporal sclerosis and mesial temporal lobe epilepsy (46 %), PANDAS (27 %), movement disorders (20 %), allergy (32 %) and bowel syndrome (88 %). Leukoencephalopathy, especially that involving periventricular areas of the parietal lobes, associated with neuroinfections and autoimmune reactions, was the main form of damage to the central nervous system (96 %). Conclusions. It is reasonable to talk about the extended clinical and laboratory phenotype in children with genetic folate cycle deficiency associated with autism spectrum disorders that requires a multidisciplinary approach to the management of patients with the mandatory assistance of a clinical immunologist.


Keywords

фолатний цикл; поліморфізми; NK-клітини; імунодефіцит; аутизм

фолатный цикл; полиморфизмы; NK-клетки; иммунодефицит; аутизм

folate cycle; polymorphisms; NK-cells; immunodeficiency; autism


For the full article you need to subscribe to the magazine.


Bibliography

1. Abe I., Shirato K., Hashizume Y. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats // Environ Health Prev. Med. — 2013. — Vol. 18(1). — P. 78-84.
2. Badiga S., Johanning G.L., Macaluso M. et al. A lower degree of PBMC L1 methylation in women with lower folate status may explain the MTHFR C677T polymorphism associated higher risk of CIN in the US post folic acid fortification era // PLoS One. — 2014. — Vol. 9(10) — Р. e110093.
3. Baffelli R., Notarangelo L.D., Imberti L. et al. Diagnosis, Treatment and Long-Term Follow Up of Patients with ADA Deficiency: a Single-Center Experience // J. Clin. Immunol. — 2015. — Vol. 35(7). — P. 624-637.
4. Bhatnagar N., Wechalekar A., McNamara C. Pancytopenia due to severe folate deficiency // Intern. Med. J. — 2012. — Vol. 42(9). — P. 1063-1064. 
5. Biamino E., Di Gregorio E., Belligni E.F. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity // Am. J. Med. Genet. Part B: Neuropsychiatr. Genet. — 2015 [Epub ahead of print].
6. Binstock T. Intra-monocyte pathogens delineate autism subgroups // Med. Hypotheses. — 2001. — Vol. 56(4). — P. 523-531.
7. Borges M.C., Hartwig F.P., Oliveira I.O., Horta B.L. Is there a causal role for homocysteine concentration in blood pressure? A Mendelian randomization study // Am. J. Clin. Nutr. — 2016. — Vol. 103(1). — P. 39-49.
8. Courtemanche C., Elson-Schwab I., Mashiyama S.T. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro // J. Immunol. — 2004. — Vol. 173(5). — P. 3186-3192. 
9. Darton T.C., Jack D.L., Johnson M. et al. MBL2 deficiency is associated with higher genomic bacterial loads during meningococcemia in young children // Clin. Microbiol. Infect. — 2014. — Vol. 20(12). — P. 1337-1342.
10. DelGiudice-Asch G., Simon L., Schmeidler J. Brief report: a pilot open clinical trial of intravenous immunoglobulin in childhood autism // J. Autism Dev. Disord. — 1999. — Vol. 29(2). — P. 157-160.
11. Delorme R., Betancur C., Scheid I. Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls // BMC Med. Genet. — 2010. — Vol. 11. — P. 108. 
12. Dimitroulas T., Sandoo A., Hodson J. et al. Associations between asymmetric dimethylarginine, homocysteine, and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism (rs1801133) in rheumatoid arthritis // Scand. J. Rheumatol. — 2015 [Epub ahead of print].
13. Donati D., Akhyani N., Fogdell-Hahn A. et al. Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections // Neurology. — 2003. — Vol. 61(10). — P. 1405-1411.
14. Engman M.L., Sundin M., Miniscalco C. Prenatal acquired cytomegalovirus infection should be considered in children with autism // Acta Paediatr. — 2015. — Vol. 104(8). — P. 792-795.
15. Fahl K., Silva C.A., Pastorino A.C. et al. Autoimmune diseases and auto antibodies in pediatric patients and their first-degree relatives with immunoglobulin A deficiency // Rev. Bras. Reumatol. — 2014 [Epub ahead of print].
16. Frye R.E. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder // Epilepsy Behav. — 2015. — Vol. 47. — P. 147-157.
17. Gentile I., Zappulo E., Bonavolta R. Exposure to Varicella Zoster Virus is higher in children with autism spectrum disorder than in healthy controls. Results from a case-control study // In Vivo. — 2014. — Vol. 28(4). — P. 627-631.
18. Ghaziuddin M., Al-Khouri I., Ghaziuddin N. Autistic symptoms following herpes encephalitis // Eur. Child. Adolesc. Psychiatry. — 2002. — Vol. 11(3). — P. 142-146.
19. Grose R.H., Thompson F.M., Cummins A.G. Deficiency of 6B11+ invariant NK T-cells in celiac disease // Dig. Dis. Sci. — 2008. — Vol. 53(7). — P. 1846-1851.
20. Hanks J. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia // Am. J. Clin. Nutr. — 2013. — Vol. 98(6). — P. 1564-74. 
21. Hiroshi H., Seiji K., Toshihiro K., Nobuo K. An adult case suspected of recurrent measles encephalitis with psychiatric symptoms // Seishin Shinkeigaku Zasshi. — 2003. — Vol. 105(10). — P. 1239-1246.
22. Inaoka M. Innate immunity and hypersensitivity syndrome // Toxicology. — 2005. — Vol. 209(2). — P. 161-163.
23. Jyonouchi H., Geng L., Streck D.L., Toruner G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study // J. Neuroinflammation. — 2012. — Vol. 9. — P. 4.
24. Kamei A., Ichinohe S., Onuma R. et al. Acute disseminated demyelination due to primary human herpesvirus-6 infection // Eur. J. Pediatr. — 1997. — Vol. 156(9). — P. 709-712.
25. Kawikova I., Grady B.P., Tobiasova Z. et al. Children with Tourette’s syndrome may suffer immunoglobulin A dysgammaglobulinemia: preliminary report // Biol. Psychiatry. — 2010. — Vol. 67(7). — P. 679-683.
26. Macerollo A., Martino D. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS): An Evolving Concept // Tremor Other Hyperkinet. Mov. (N.Y.). — 2013. — tre-03-167-4158-7.
27. Marques F., Brito M.J., Conde M. Autism spectrum disorder secondary to enterovirus encephalitis // J. Child Neurol. — 2014. — Vol. 29(5). — P. 708-714.
28. Miller A.L. The methionine-homocysteine cycle and its effects on cognitive diseases // Altern. Med. Rev. — 2003. — Vol. 8(1). — P. 7-19. 
29. Monge-Galindo L., Pérez-Delgado R., López-Pisón J. Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period // Rev. Neurol. — 2010. — Vol. 50(6). — P. 341-348.
30. Mora M., Quintero L., Cardenas R. Association between HSV-2 infection and serum anti-rat brain antibodies in patients with autism // Invest. Clin. — 2009. — Vol. 50(3). — P. 315-326. 
31. Morales de Machín A., Méndez K., Solís E. et al. C677T polymorphism of the methylentetrahydrofolate reductase gene in mothers of children affected with neural tube defects // Invest. Clin. — 2015. — Vol. 56(3). — P. 284-295.
32. Naghibalhossaini F., Ehyakonandeh H., Nikseresht A., Kamali E. Association Between MTHFR Genetic Variants and Multiple Sclerosis in a Southern Iranian Population // Int. J. Mol. Cell. Med. — 2015. — Vol. 4(2). — P. 87-93.
33. Nicolson G.L., Gan R., Nicolson N.L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders // J. Neurosci Res. — 2007 — Vol. 85(5). — P. 1143-1148.
34. O’Keeffe J., Gately C.M., Counihan T. et al. T-cells expres-sing natural killer (NK) receptors are altered in multiple sclerosis and responses to alpha-galactosylceramide are impaired // J. Neurol. Sci. — 2008. — Vol. 275(1–2). — P. 22-28.
35. Partearroyo T., Úbeda N., Montero A. Vitamin B(12) and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats // Nutrients. — 2013. — Vol. 5(12). — P. 4836-4848.
36. Peng Q., Lao X., Huang X. et al. The MTHFR C677T polymorphism contributes to increased risk of Alzheimer's disease: evidence based on 40 case-control studies // Neurosci Lett. — 2015. — Vol. 586. — P. 36-42.
37. Piaścik M., Rydzewska G., Pawlik M. et al. Diffuse nodular lymphoid hyperplasia of the gastrointestinal tract in patient with selective immunoglobulin A deficiency and sarcoid-like syndrome — case report // Adv. Med. Sci. — 2007. — Vol. 52. — P. 296-300.
38. Pinillos-Pisón R., Llorente-Cereza M.T., López-Pisón J. Congenital infection by cytomegalovirus. A review of our 18 years’ experience of diagnoses // Rev. Neurol. — 2009. — Vol. 48(7). — P. 349-353.
39. Plebani A., Duse M., Tiberti S. Intravenous gamma-globulin therapy and serum IgG subclass levels in intractable childhood epilepsy // Monogr. Allergy. — 1988. — Vol. 23. — P. 204-215. 
40. Promthet S., Pientong C., Ekalaksananan T. et al. Risk factors for rectal cancer and methylenetetrahydrofolate reductase polymorphisms in a population in Northeast Thailand // Asian. Pac. J. Cancer Prev. — 2012. — Vol. 13(8). — P. 4017-4023.
41. Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis // Autism Res. — 2013. — Vol. 6(5). — P. 384-392.
42. Qi X., Sun X., Xu J. et al. Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk in Chinese population // Tumour. Biol. — 2014. — Vol. 35(3). — P. 1757-1762.
43. Reinert P., Moulias R., Goust J.M. Demonstration of cellular immunity deficiency limited to measles virus in 20 cases of subacute sclerosing leukoencephalitis // Arch. Fr. Pediatr. — 1972. — Vol. 29(6). — P. 655-665. 
44. Russo A.J., Krigsman A., Jepson B., Wakefield A. Low serum myeloperoxidase in autistic children with gastrointestinal disease // Clinical and Experimental Gastroenterology. — 2009. — Vol. 2. — P. 85-94.
45. Santaella M.L., Varela Y., Linares N., Disdier O.M. Prevalence of autism spectrum disorders in relatives of patients with selective immunoglobulin A deficiency // P. R. Health Sci J. — 2008. — Vol. 27(3). — P. 204-208. 
46. Schleinitz N., Vély F., Harlé J.N., Vivier E. Natural killer cells in human autoimmune diseases // Immunology. — 2010. — Vol. 131(4). — P. 451-458.
47. Schoendorfer N.C., Obeid R., Moxon-Lester L. Methylation capacity in children with severe cerebral palsy // Eur. J. Clin. Invest. — 2012. — Vol. 42(7). — P. 768-776. 
48. Scott J.M. Folic acid metabolism and mechanisms of neural tube defects // Ciba Found Symp. — 1994. — Vol. 181. — P. 180-187.
49. Singh A., Pandey S., Pandey L.K., Saxena A.K. In human alleles specific variation of MTHFR C677T and A1298C associated “risk factor” for the development of ovarian cancer // J. Exp. Ther. Oncol. — 2015. — Vol. 11(1). — P. 67-70.
50. Singh V.K., Lin S.X., Yang V.C. Serological association of measles virus and human herpesvirus-6 with brain autoantibodies in autism // Clin. Immunol. Immunopathol. — 1998. — Vol. 89(1). — P. 105-108.
51. Strunk T., Gottschalk S., Goepel W. Subacute leukencephalopathy after low-dose intrathecal methotrexate in an adolescent he-terozygous for the MTHFR C677T polymorphism // Med. Pediatr. Oncol. — 2003. — Vol. 40(1). — P. 48-50. 
52. Sukla K.K., Jaiswal S.K., Rai A.K. et al. Role of folate-homocysteine pathway gene polymorphisms and nutritional cofactors in Down syndrome: A triad study // Hum. Reprod. — 2015. — Vol. 30(8). — P. 1982-1993.
53. Tran T., Cotlarciuc I., Yadav S. et al. Candidate-gene analysis of white matter hyperintensities on neuroimaging // J. Neurol. Neurosurg. Psychiatry. — 2015 [Epub ahead of print].
54. Troen A.M., Mitchell B., Sorensen B. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women // J. Nutr. — 2006. — Vol. 136(1). — P. 189-194.
55. Van der Weyden M.B., Hayman R.J. et al. Folate-deficient human lymphoblasts: changes in deoxynucleotide metabolism and thymidylate cycle activities // Eur. J. Haematol. — 1991. — Vol. 47(2). — P. 109-114.
56. Villanueva J., Lee S., Giannini E.H. et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome // Arthritis Res. Ther. — 2005. — Vol. 7(1). — R30-37.
57. Yang Y., Luo Y., Yuan J. et al. Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation // Arch. Gynecol. Obstet. — 2015 [Epub ahead of print].
58. Zhang X.F., Liu T., Li Y., Li S. Association between MTHFR 677C/T and 1298A/C gene polymorphisms and breast cancer risk // Genet. Mol. Res. — 2015. — Vol. 14(4). — P. 16425-16430.

Back to issue