Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

International journal of endocrinology Том 15, №4, 2019

Back to issue

Endothelial dysfunction in clinical practice: the role of laser Doppler flowmetry (literature review)

Authors: Динник О.Б. (1), Марунчин Н.А. (1), Мостовий С.Є. (2)
1 - ТОВ «Інститут еластографії», м. Київ, Україна
2 - Медичний центр «Doctor Vera», м. Київ, Україна

Categories: Endocrinology

Sections: Specialist manual

print version


Summary

В огляді літератури розкрито поняття ураження ендотелію як патології, що є проявом неінфекційних захворювань і предиктором серцево-судинних і цереброваскулярних подій, особливо у хворих на цукровий діабет (ЦД) 2-го типу. Мікроциркуляторне русло являє собою сукупність найдрібніших кровоносних судин (артеріол, пре- та посткапілярних сфінктерів, капілярів, венул), лімфатичних капілярів, що підтверджує концепцію мультимодальності судинно-паренхіматозної комунікації. Під час розвитку патологічного процесу (хвороба, стрес) відбувається вивільнення прозапальних цитокінів, що спричинюють клітинну дисфункцію, тромбоз, фіброз і ураження ендотелію. Сучасним неінвазивним методом первинної оцінки стану мікроциркуляції, виявлення порушень ендотелію, доказовості щодо ефективності впливу фармакологічних препаратів, прогнозування перебігу захворювання, менеджменту пацієнтів у клінічній практиці є лазерна допплерівська флоуметрія (ЛДФ). На підставі аналізу об’єктивних параметрів ЛДФ згідно з сучасними європейськими рекомендаціями встановлюється тип кровотоку (нормотонічний, гіперемічний, спастичний, застійно-стазичний) і, відповідно, фактори ураження ендотелію. Не менш важливим питанням є способи корекції розладів мікроциркуляції (здебільшого — інфузійна терапія), оскільки саме вплив препаратів на пре- і посткапілярні сфінктери дозволяє встановити ефективність/неефективність проведеної терапії. ЛДФ застосовується у різних клінічних напрямках, таких як кардіологія, ендокринологія, ревматологія, а також як метод діагностики стану мікроциркуляторного русла у хірургічній практиці.

В обзоре литературы раскрыто понятие поражения эндотелия как патологии, которая является проявлением неинфекционных заболеваний ХХІ века и предиктором сердечно-сосудистых и цереброваскулярных событий, особенно у больных сахарным диабетом 2-го типа. Микроциркуляторное русло представляет собой совокупность самых мелких кровеносных сосудов (артериол, пре- и посткапиллярных сфинктеров, капилляров, венул), лимфатических капилляров, что подтверждает концепцию мультимодальности сосудисто-паренхиматозной коммуникации. Во время развития патологического процесса (болезнь, стресс) происходит высвобождение провоспалительных цитокинов, которые вызывают клеточную дисфункцию, тромбоз, фиброз и поражение эндотелия. Современным неинвазивным методом первичной оценки состояния микроциркуляции, выявления нарушений эндотелия, доказуемости эффективности влияния фармакологических препаратов, прогнозирования течения заболевания в клинической практике является лазерная допплеровская флоуметрия (ЛДФ). На основании анализа объективных параметров ЛДФ согласно европейским рекомендациям устанавливается тип кровотока (нормотонический, гиперемический, спастический, застойно-стазический) и, соответственно, факторы поражения эндотелия пациента. Не менее важным вопросом являются способы коррекции нарушений микроциркуляции (по большей части — инфузионная терапия), так как именно влияние препаратов на пре- и посткапиллярные сфинктеры позволяет установить эффективность/неэффективность проведенной терапии. ЛДФ используется в разных клинических направлениях, таких как кардиология, эндокринология, ревматология, а также как метод диагностики состояния микроциркуляторного русла в хирургической практике.

This literature review deals with endothelial dysfunction. Endothelial dysfunction is presented in noninfectious di­seases of the 21st century and at the same moment is a predictor of cardiovascular and cerebrovascular diseases, especially in patients with type 2 diabetes mellitus. Microcirculation consists of the arterioles, pre- and postcapillary sphincters, capillaries, venules and lymph capillaries. The pathological conditions such as disease and stress are characterized by the presence of the proinflammatory cytokines which cause the cell dysfunction, thrombosis, fibrosis and injury of endothelium. Laser Doppler flowmetry is a comprehensive noninvasive method for primary assessment of microcirculation, detection of endothelial injury, evidence of infusion therapy effectiveness, disease prognosis. The type of circulation (normal, hyperemic, spasm, stasis) and possible etiological factors of endothelial injury are usually defined according to the results of laser Doppler flowmetry and the European guidelines. It is also important to define the possible treatment of endothelial injury (especially influence of infusion therapy) and its role in pre- and postcapillaries functioning as the method of microcirculatory system assessment. Laser Doppler flowmetry has been widely used in cardiology, endocrinology, rheumatology and in surgical practice.


Keywords

ендотелій; лазерна допплерівська флоуметрія; серцево-судинні захворювання; мікроциркуляція; цукровий діабет; інфузіологія; огляд

эндотелий; лазерная допплеровская флоуметрия; сердечно-сосудистые заболевания; микроциркуляция; сахарный диабет; обзор

endothelium; laser Doppler flowmetry; cardiovascular diseases; microcirculation; diabetes mellitus; infusion therapy; review


For the full article you need to subscribe to the magazine.


Bibliography

  1. Beaglehole R, Bonita R, Horton R, et al. Priority actions for the non-communicable disease crisis. Lancet. 2011 Apr 23;377(9775):1438-47. doi: 10.1016/S0140-6736(11)60393-0.  
  2. Gutterman D, Chabowski D, Kadlec A, et al. The human microcirculation. regulation of flow and beyond. Circ Res. 2016 Jan 8;118(1):157-72. doi: 10.1161/CIRCRESAHA.115.305364.
  3. International Diabetes Federation (IDF). IDF Diabetes Atlas, 2017. 8th ed. Brussels, Belgium: International Diabetes Federation, 2017. 145 p.
  4. Patt BT, Jarjoura D, Haddad DN, et al. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2010 Dec 15;182(12):1540-5. doi: 10.1164/rccm.201002-0162OC.
  5. Laguens R, Alvarez P, Vigliano C, et al. Coronary microcirculation remodeling in patients with idiopathic dilated cardiomyopathy. Cardiology. 2011;119(4):191-6. doi: 10.1159/000331440.  
  6. Naraoka M, Matsuda N, Shimamura N, Asano K, Ohkuma H. The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH. Biomed Res Int. 2014;2014:253746. doi: 10.1155/2014/253746.
  7. Migrino RQ, Hari P, Gutterman DD, et al. Systemic and microvascular oxidative stress induced by light chain amyloidosis. Int J Cardiol. 2010 Nov 5;145(1):67-8. doi: 10.1016/j.ijcard.2009.04.044.
  8. Miura H, Toyama K, Pratt PF, Gutterman DD. Cigarette smoking impairs Na+-K+-ATPase activity in the human coronary microcirculation. Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H109-17. doi: 10.1152/ajpheart.00237.2010.
  9. Holowatz LA. Human cutaneous microvascular ageing: potential insights into underlying physiological mechanisms of endothelial function and dysfunction. J Physiol. 2008 Jul 15;586(14):3301. doi: 10.1113/jphysiol.2008.157594.
  10. Moises HW, Wollschlger D, Binder H. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder. Transl Psychiatry. 2015 Aug 11;5:e616. doi: 10.1038/tp.2015.103.
  11. Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Köhler R. Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):704-9. doi: 10.1161/01.ATV.0000156399.12787.5c.
  12. Paulus WJ, Tschpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013 Jul 23;62(4):263-71. doi: 10.1016/j.jacc.2013.02.092.
  13. Scalia R. The microcirculation in adipose tissue inflammation. Rev Endocr Metab Disord. 2013 Mar;14(1):69-76. doi: 10.1007/s11154-013-9236-x.
  14. Thijssen DH, Green DJ, Hopman MT. Blood vessel remodeling and physical inactivity in humans. J Appl Physiol (1985). 2011 Dec;111(6):1836-45. doi: 10.1152/japplphysiol.00394.2011.  
  15. Bircher A, de Boer EM, Agner T, Wahlberg JE, Serup J. Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis. 1994 Feb;30(2):65-72. doi: 10.1111/j.1600-0536.1994.tb00565.x.
  16. Fullerton A, Stücker M, Wilhelm KP, et al. Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging: a report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project. Contact Dermatitis. 2002 Mar;46(3):129-40. doi:10.1034/j.1600-0536.2002.460301.x.
  17. Fullerton A, Fischer T, Lahti A, Wilhelm KP, Takiwaki H, Serup J. Guidelines for measurement of skin colour and erythema: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis. 1996 Jul;35(1):1-10.
  18. Herasymchuk PO, Chornomydz AV, Kisil VP. Comparative evaluation of characteristics of the limbs microcirculation by the metod of laser Doppler flowmetry. Achievements of Clinical and Experimental Medicine. 2012;(1):40-43. (in Ukrainian).
  19. Vasiliev AP, Streltsova NN. Laser Doppler flowmetry in assessment of specifics of skin microhemocirculation in hypertensive patients and in its comorbidity with 2 type diabetes mellitus. Russian Journal of Cardiology. 2015;20(12):20-26. (in Russian).
  20. Zheliba MD, Bogachuk MG, Zarezenko TP, Balabuyeva VV, Vovchuk IM. Microcirculatory changes in necrotic-inflammatory focus in patients with 2 type diabetes mellitus. Clinical Anatomy and Operative Surgery.  2017;16(2):10-11. doi: 10.24061/1727-0847.16.1.2017.32. (in Ukrainian).
  21. Bychina ES, Panchenkova LA. Functional specifications of microcirculation in patients with arterial hypertension associated with metabolic syndrome and subclinical hypothyroidism. Medical Visualization. 2013;(6):100-104. (in Russian).
  22. Shinkin MV, Zvenigorodskaya LA, Mkrtumyan AM. Laser Doppler flowmetry and fluorescence spectroscopy as methods for preclinical manifestations of diabetic foot syndrome assessment. Effektivnaia farmakoterapiia. 2018;(18):20-26. (in Russian).
  23. Shapoval SD, Savon IL, Smirnova DA, et al. Features of lower extremities perfusion in patients with complicated diabetic foot syndrome. Klinicheskaia khirurgiia. 2013;(5):50-54. (in Russian).
  24. Duvansky VA, Azizov GA, Tamrazova OB, Bazhenova GE, Gagarin EN. Peculiarities of microcirculation in patients with the syndrome of diabetic foot. Lazern Med. 2011;15(2):32. (in Russian).
  25. Sander SV. Comparative characteristics of laser photoplethysmography and laser Doppler flowmetry in the study of foot blood supply. Clinical Anatomy and Operative Surgery. 2017;16(2):94-97. doi: 10.24061/1727-0847.16.1.2017.53. (in Ukrainian).
  26. Katalin B, Barbara S, Kovacs D,et al. Lower limb ischemia and microrheological alterations in patients with diabetic retinopathy. Clin Hemorheol Microcirc. 2018;69(1-2):23-35. doi: 10.3233/CH-189103.
  27. Kulikov D, Glazkov A, Dreval A, et al. Approaches to improve the predictive value of laser Doppler flowmetry in detection of microcirculation disorders in diabetes mellitus. Clin Hemorheol Microcirc. 2018;70(2):173-179. doi: 10.3233/CH-170294.
  28. Mostovyj SJe, Dynnyk OB, Berezovs’kyj VA. Investigation of electrical activity of the myocardium and functional state of the skin microcirculatory at ischemic heart disease. Mystectvo likuvannja. 2014;(111-112):29-33. (in Ukrainian).
  29. Vasiliev AP, Streltsova NN, Sekisova MA. Skin microcirculatory organization types in arterial hypertension by the data of doppler flowmetry. Russian Journal of Cardiology. 2015;20(4):7-12. (in Russian).
  30. Murray AK, Herrick AL, King TA. Laser Doppler imaging: a developing technique for application in the rheumatic disease. Rheumatology (Oxford). 2004 Oct;43(10):1210-8. doi: 10.1093/rheumatology/keh275.  
  31. Sardinha J, MacKinnon S, Lehmann C. Rapid clinical assessment of the sublingual microcirculation - visual scoring using microVAS in comparison to standard semi-automated analysis. Clin Hemorheol Microcirc. 2018 Oct 11. doi: 10.3233/CH-180427.  
  32. Yu S, Hu SC, Yu HS, Chin YY, Cheng YC, Lee CH. Early sign of microangiopathy in systemic sclerosis: The significance of cold stress test in dynamic laser Doppler flowmetry. Clin Hemorheol Microcirc. 2019;71(3):373-378. doi: 10.3233/CH-180419.
  33. Dombrovskyi DB, Savin VV. Assessment of microhemodynamic by means of laser doppler floumetry in patients with chronic lower limb ischemia after transplantation of cord blood cells. Hospital Surgery. 2016;(73):34-37. (in Ukrainian).

Back to issue