Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

"Emergency medicine" №6(101), 2019

Back to issue

Glycocalix role in regulating vascular permeability: the revised Starling’s principle

Authors: Мальцева Л.А., Мищенко Е.А., Мосенцев Н.Ф., Мальцев И.А., Бондаренко Н.С.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украин

Categories: Medicine of emergency

Sections: Specialist manual

print version


Summary

Незважаючи на десятиліття інтенсивних доклінічних і клінічних досліджень, все ще існує велика невизначеність щодо ефективності різних інфузійних стратегій при критичних станах. Нові концепції проникності судин обіцяють змінити підхід до інфузійних стратегій і в кінцевому підсумку привести до підвищення їх ефективності. Центральним елементом нових концепцій є ендотеліальний глікокалікс, що вистилає просвіт судин. Знання ендотеліального глікокаліксу дозволило переглянути класичний принцип Старлінга, щоб краще пояснити проходження рідини через ендотеліальний бар’єр. Ця модель ендотеліальної проникності значною мірою пояснює різницю в прогнозованому (1 : 3–1 : 5) порівняно зі спостережуваним (приблизно 1 : 1,3–1 : 1,4) співвідношенні колоїдів і кристалоїдів, необхідних для досягнення аналогічних гемодинамічних кінцевих точок у клінічній практиці. Сказане вище пояснює, чому інфузія ізоонкотичних колоїдів не змінює існуючий інтерстиціальний набряк і може в деяких ситуаціях привести до меншого збільшення обсягу і більшого набряку тканини, ніж кристалоїди, у критичних пацієнтів. Ефекти збільшення обсягу розчинів, що вводяться, також різняться залежно від швидкості інфузії, ступеня вазоконстрикції, цілісності ендотеліального глікокаліксу і волемічного статусу. Тому ефективність рідинної реанімації вважається контекстно-залежною. Пошкодження ендотеліального глікокаліксу, визване підвищеною проникністю, відбувається при низці критичних станів, включаючи сепсис і тяжку травму, а ступінь проникності пов’язаний із поганими наслідками. Ймовірно, але ще не доведено, що захист і відновлення ендотеліального глікокаліксу в цих умовах покращують результати лікування. Кілька фармакологічних методів лікування знаходяться на доклінічній стадії розробки, і поки немає достатніх даних, що підтверджували би їх клінічну ефективність. Проте з’являється все більше свідчень того, що інфузійні розчини, які зазвичай використовуються, захищають і відновлюють ендотеліальний глікокалікс і модулюють проникність ендотелію, але розрізняються за своєю здатністю робити це ефективно. Тому важливо, щоб при виборі рідин для ресусцитації при конкретній патології лікарі на додаток до онкотичних властивостей враховували їх здатність захищати і відновлювати ендотеліальний глікокалікс.

Несмотря на десятилетия интенсивных доклинических и клинических исследований, все еще существует большая неопределенность в отношении эффективности различных инфузионных стратегий при критических состояниях. Новые концепции проницаемости сосудов обещают изменить подход к инфузионным стратегиям и в конечном итоге привести к повышению их эффективности. Центральным элементом новых концепций является эндотелиальный гликокаликс, который выстилает просвет сосудов. Знание эндотелиального гликокаликса позволило пересмотреть классический принцип Старлинга, чтобы лучше объяснить прохождение жидкости через эндотелиальный барьер. Эта модель эндотелиальной проницаемости в значительной степени объясняет разницу в прогнозируемом (1 : 3–1 : 5) в сравнении с наблюдаемым (приблизительно 1 : 1,3–1 : 1,4) соотношении коллоидов и кристаллоидов, необходимых для достижения аналогичных гемодинамических конечных точек в клинической практике. Вышесказанное объясняет, почему инфузия изоонкотических коллоидов не изменяет существующий интерстициальный отек и может в некоторых ситуациях привести к меньшему увеличению объема и большему отеку ткани, чем кристаллоиды, у критических пациентов. Эффекты увеличения объема вводимых растворов также различаются в зависимости от скорости инфузии, степени вазоконстрикции, целостности эндотелиального гликокаликса и волемического статуса. Поэтому эффективность жидкостной реанимации считается контекстно-зависимой. Повреждение эндотелиального гликокаликса, вызванное повышенной проницаемостью, происходит при ряде критических состояний, включая сепсис и тяжелую травму, а степень проницаемости связана с плохими исходами. Вероятно, но еще не доказано, что защита и восстановление эндотелиального гликокаликса в этих условиях улучшают результаты лечения. Несколько фармакологических методов лечения находятся на доклинической стадии разработки, и пока нет достаточных данных, подтверждающих их клиническую эффективность. Тем не менее появляется все больше свидетельств того, что обычно используемые инфузионные растворы защищают и восстанавливают эндотелиальный гликокаликс и модулируют проницаемость эндотелия, но различаются по своей способности делать это эффективно. Поэтому важно, чтобы при выборе жидкостей для ресусцитации при конкретной патологии врачи в дополнение к онкотическим свойствам учитывали их способность защищать и восстанавливать эндотелиальный гликокаликс.

Despite decades of intense preclinical and clinical researches, there is still much uncertainty regarding the volume-expanding efficacy of different fluid resuscitation strategies across a range of diseases, particularly for critically ill patients. New concepts on vascular permeability promise to change the approaches to the fluid resuscitation and ultimately lead to improvements in its efficacy. Central to these new concepts is the endothelial glycocalyx, which lines the luminal aspect of the vascular endothelium. Knowledge of the endothelial glycocalyx has permitted to revise the classic Starling’s principle to better explain the observed flux of fluid across the endothelial barrier. This new model of endothelial permeability largely explains the difference in the predicted (1 : 3–1 : 5) versus the observed (approximately 1 : 1.3–1 : 1.4) ratio of colloid to crystalloid required to achieve similar hemodynamic end-points in clinical trials. It also explains why the infusion of an iso-oncotic colloid fluid will not reverse existing interstitial oedema, and may in some situations result in less volume expansion and greater tissue oedema than a crystalloid in critically ill patients. The vo­lume expan­ding effects of infused fluids also differ depending on the rate of infusion, the degree of vasoconstriction, the integrity of the endothelial glycocalyx and the volume status. Because of this, the effectiveness of fluid resuscitation is said to be context-sensitive. Damage to the endothelial glycocalyx associated with increased permeability occurs in some critical illnesses, inclu­ding sepsis and severe trauma, and the degree of shedding is associated with poor outcomes. It is likely but not yet proven, that protecting and restoring of the endothelial glycocalyx in these conditions will improve outcomes. Several pharmacologic the­rapies are being investigated but they involved the pre-clinical phase of the development and there is not yet enough evidence to support their clinical use. However, there is growing evidence that commonly used resuscitation fluids protect and restore the endothelial glycocalyx and modulate endothelial permeability, but differ in their ability to do so. It is therefore important that, when choosing resuscitation fluids for particular patients, clinicians consider factors additional to oncotic properties, including ability to protect and repair the endothelial glycocalyx.


Keywords

глікокалікс; судинна ендотеліальна клітина; руйнування глікокаліксу; переглянутий принцип Старлінга; огляд

гликокаликс; сосудистая эндотелиальная клетка; разрушение гликокаликса; пересмотренный принцип Старлинга; обзор

glycocalyx; vascular endothelial cell; destruction of glycocalyx; revised Starling’s principle; review


For the full article you need to subscribe to the magazine.


Bibliography

1. Finfer S., Myburgh J., Bellomo R. Intravenous fluid therapy in critically ill adults. Nat. Rev. Nephrol. 2018. № 14. Р. 541-557.

2. Levick J.R., Michel C.C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 2010. № 87. Р. 198-210.

3. Van der Heijden M., Verheij J., van Nieuw Amerongen G.P., Groeneveld A.B. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit. Care Med. 2009. № 37. Р. 1275-1281.

4. Jacob M., Bruegger D., Rehm M. et al. The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc. Res. 2007. № 73. Р. 575-586.

5. Johansson P., Stensballe J., Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical illness a unifying pathophysiologic mechanism. Crit. Care. 2017. № 21. Р. 25.

6. Schott U., Solomon C., Fries D., Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand. J. Trauma Resusc. Emerg. Med. 2016. № 24. Р. 48.

7. Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A., oude Egbrink M.G. The endothelial glycocalyx: composition, functions, and visualization. Pflug Arch. 2007. № 454. Р. 345-359.

8. Lekakis J., Abraham P., Balbarini A. et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on peripheral circulation. Eur. J. Cardiovasc. Prev. Rehabil. 2011. № 18. Р. 775-789.

9. Straat M., Muller M.C., Meijers J.C. et al. Effect of transfusion of fresh frozen plasma on parameters of endothelial condition and inflammatory status in non-bleeding critically ill patients: a prospective substudy of a randomized trial. Crit. Care. 2015. № 19. Р. 163.

10. Nam E.J., Park P.W. Shedding of cell membrane-bound proteoglycans. Methods Mol. Biol. 2012. № 836. Р. 291-305.

11. Starling E.H. On the absorption of fluids from the connective tissue spaces. J. Physiol. 1896. № 19. Р. 312-326.

12. Levick J.R. Revision of the Starling principle: new views of tissue fluid balance. J. Physiol. 2004. № 557(Pt 3). Р. 704.

13. Levick J.R. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp. Physiol. 1991. № 76. Р. 825-857.

14. Yen W.Y., Cai B., Yang J.L. et al. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS One. 2015. № 10. e0117133.

15. Trani M., Dejana E. New insights in the control of vascular permeability: vascular endothelial-cadherin and other players. Curr. Opin. Hematol. 2015. № 22. Р. 267-272.

16. Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012. № 108. Р. 384-394.

17. Tatara T. Context-sensitive fluid therapy in critical illness. J. Intensive Care. 2016. № 4. Р. 20.

18. Hahn R.G. Fluid therapy in uncontrolled hemorrhage — what experimental models have taught us. Acta Anaesthesiol. Scand. 2013. № 57. Р. 16-28.

19. Jacob M., Chappell D., Hofmann-Kiefer K. et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit. Care. 2012. № 16. Р. 86.

20. Jacob M., Bruegger D., Rehm M., Welsch U., Conzen P., Becker B.F. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology. 2006. № 104. Р. 1223-1231.

21. Borup T., Hahn R.G., Holte K., Ravn L., Kehlet H. Intra-operative colloid administration increases the clearance of a post-operative fluid load. Acta Anaesthesiol. Scand. 2009. № 53. Р. 311-317.

22. Myburgh J.A., Finfer S., Bellomo R. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 2012. № 367. Р. 1901-1911.

23. Finfer S., Bellomo R., Boyce N. et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N. Engl. J. Med. 2004. № 350. Р. 2247-2256.

Similar articles

Choice of resuscitation fluid to preserve the endothelial glycocalyx
Authors: Мальцева Л.А., Мищенко Е.А., Мосенцев Н.Н., Мальцев И.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Emergency medicine" №6(101), 2019
Date: 2019.10.14
Categories: Medicine of emergency
Sections: Specialist manual
Glycocalyx: a new diagnostic and therapeutic target in sepsis
Authors: Мальцева Л.А., Карась Р.К., Мосенцев Н.Ф., Мосенцев Н.Н., Касьянова А.Ю.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Emergency medicine" №6(101), 2019
Date: 2019.10.14
Categories: Medicine of emergency
Sections: Specialist manual
The role and place of albumin in modern infusion-transfusion therapy
Authors: Черний В.И.
Государственное научное учреждение «Научно-практический центр профилактической и клинической медицины» Государственного управления делами, г. Киев, Украина

"Emergency medicine" 1 (80) 2017
Date: 2017.03.16
Categories: Medicine of emergency
Sections: Specialist manual
Clinical physiology and clinical pharmacology of modern fluid therapy of circulatory shock  (literature review)
Authors: Йовенко И.А.(1), Царев А.В.(2), Кузьмова Е.А.(1), Мынка В.Ю.(1), Селезнева У.В.(1)
(1) — КУ «Днепропетровская областная клиническая больница им. И.И. Мечникова» ДОС, г. Днепр, Украина
(2) — КГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Emergency medicine" №5(92), 2018
Date: 2018.10.10
Categories: Medicine of emergency
Sections: Specialist manual

Back to issue