Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

International neurological journal Том 16, №5, 2020

Back to issue

Нейробіологія COVID-19

Authors: Majid Fotuhi (a, b), Ali Mian (c), Somayeh Meysami (d), Cyrus A. Raji (c, e)
a — NeuroGrow Brain Fitness Center, McLean, VA, USA
b — Johns Hopkins Medicine, Baltimore, MD, USA
c — Neuroradiology Section, Mallinckrodt Institute of Radiology at Washington University in St. Louis, St. Louis, MO, USA
d — Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
e — Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA

Categories: Neurology

Sections: Specialist manual

print version


Summary

Аносмія, інсульт, параліч, порушення функцій черепних нервів, енцефалопатія, делірій, менінгіт і судоми є деякими з неврологічних ускладнень у пацієнтів із коронавірусною хворобою-19 (COVID-19), викликаною новим коронавірусом-2 (SARS-Cov2). Залишається проблемою встановити, у яких випадках неврологічні порушення при COVID-19 викликані самим SARS-Cov2, надмірною цитокіновою відповіддю, яку він запускає, і/або є результатом гіперкоагуляції і тромбоутворення в кровоносних судинах усього організму й мозку. У цій статті ми зробимо огляд матеріалів, де згадуються неврологічні прояви в пацієнтів з COVID-19, у тому числі гострі неврологічні симптоми (наприклад, інсульт), навіть без типових респіраторних симптомів, таких як лихоманка, кашель або задишка. Також ми обговоримо різні нейробіологічні процеси й механізми в головному мозку, черепних нервах, периферичних нервах і м’язах, що можуть лежати в основі зв’язку між SARS-Cov2 і COVID-19. Нарешті, ми пропонуємо базову класифікаційну схему NeuroCovid, що об’єднує ці концепції і виділяє деякі питання, які потребують вирішення в клінічній практиці в даний момент, і довгострокові наслідки COVID-19, такі як депресія, обсесивно-компульсивний розлад, безсоння, зниження когнітивних функцій, прискорене старіння, хвороба Паркінсона або хвороба Альцгеймера в майбутньому. При цьому ми маємо намір надати базис для майбутніх гіпотез і досліджень щодо взаємодій SARS-Cov2 і нервової системи.

Аносмия, инсульт, паралич, нарушение функций черепных нервов, энцефалопатия, делирий, менингит и судороги являются некоторыми из неврологических осложнений у пациентов с коронавирусной болезнью-19 (COVID-19), вызванной новым коронавирусом-2 (SARS-Cov2). Остается проблемой установить, в каких случаях неврологические нарушения при COVID-19 вызваны самим SARS-Cov2, чрезмерным цитокиновым ответом, который он запускает, и/или являются результатом гиперкоагуляции и тромбообразования в кровеносных сосудах всего организма и мозга. В этой статье мы сделаем обзор материалов, в которых упоминаются неврологические проявления у пациентов с COVID-19, в том числе острые неврологические симптомы (например, инсульт), даже без типичных респираторных симптомов, таких как лихорадка, кашель или одышка. Также мы обсудим различные нейробиологические процессы и механизмы в головном мозге, черепных нервах, периферических нервах и мышцах, которые могут лежать в основе связи между SARS-Cov2 и COVID-19. Наконец, мы предлагаем базовую классификационную схему NeuroCovid, которая объединяет эти концепции и выделяет некоторые вопросы, требующие решения в клинической практике в настоящий момент, и долгосрочные последствия COVID-19, такие как депрессия, обсессивно-компульсивное расстройство, бессонница, снижение когнитивных функций, ускоренное старение, болезнь Паркинсона или болезнь Альцгеймера в будущем. При этом мы намерены предоставить базис для будущих гипотез и исследований в отношении взаимодействий SARS-Cov2 и нервной системы.

Anosmia, stroke, paralysis, cranial nerve deficits, encephalopathy, delirium, meningitis, and seizures are some of the neurological complications inpatients with coronavirus disease-19 (COVID-19) which is caused by acute respiratory syndrome coronavirus 2 (SARS-Cov2). There remains a challenge to determine the extent to which neurological abnormalities in COVID-19 are caused by SARS-Cov2 itself, the exaggerated cytokine response it triggers, and/or the resulting hypercoag-ulapathy and formation of blood clots in blood vessels throughout the body and the brain. In this article, we review the reports that address neurological manifestations in patients with COVID-19 who may present with acute neurological symptoms (e.g., stroke), even without typical respiratory symptoms such as fever, cough, or shortness of breath. Next, we discuss the different neurobiological processes and mechanisms that may underlie the link between SARS-Cov2 and COVID-19 in the brain, cranial nerves, peripheral nerves, and muscles. Finally, we propose a basic “NeuroCovid” classification scheme that integrates these concepts and highlights some of the short-term challenges for the practice of neurology today and the longterm sequalae of COVID-19 such as depression, OCD, insomnia, cognitive decline, accelerated aging, Parkinson’s disease, or Alzheimer’s disease in the future. In doing so, we intend to provide a basis from which to build on future hypotheses and investigations regarding SARS-Cov2 and the nervous system.


Keywords

хвороба Альцгеймера; аносмія; цереброваскулярна патологія; COVID-19; цитокіни; SARS-Cov2; судоми; васкуліт

болезнь Альцгеймера; аносмия; цереброваскулярная патология; COVID-19; цитокины; SARS-Cov2; судороги; васкулит

Alzheimer’s disease; anosmia; cerebrovascular disease; COVID-19; cytokines; SARS-Cov2; seizure; vasculitis


For the full article you need to subscribe to the magazine.


Bibliography

1. Naming the coronavirns disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed May 1, 2020.

2. Pleasure S.J., Green A.J., Josephson S.A. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: neurologists move to the frontlines. JAMA Neurol. 2020. doi:10.1001/jamaneurol.2020.1065.

3. Liu K., Pan M., Xiao Z., Xu X. Neurological manifestations of the coronavirus (SARS-cov-2) pandemic 2019–2020. J. Neurol. Neurosurg. Psychiatry. 2020. 91. 669-670.

4. Ogier M., Andeol G., Sagui E., Bo G.D. How to detect and track chronic neurologic sequelae of COVID- 19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up. Brain Behav. Immun. Health. 2020. 5. 100081.

5. Bridwell R., Long B., Gottlieb M. Neurologic complications of COVID-19. Am. J. Emerg. Med. 2020. doi: 10.1016/j.ajem.2020.05.024.

6. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., Miao X., Li Y., Hu B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020. doi:10.1001/jamaneurol.2020.1127.

7. Li Z., Liu T., Yang N., Han D., Mi X., Li Y., Liu K., Vuylsteke A., Xiang H., Guo X. Neurological manifestations of patients with COVID-19: Potential routes of SARS-cov-2 neuroinvasion from the periphery to the brain. Front Med. 2020. doi: 10.1007/s11684-020-0786-5.

8. Chen T., Wu D., Chen H., Yan W., Yang D., Chen G., Ma K., Xu D., Yu H., Wang H., Wang T., Guo W., Chen J., Ding C., Zhang X., Huang J., Han M., Li S., Luo X., Zhao J., Ning Q. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020. 368. m1091.

9. Phua J., Weng L., Ling L., Egi M., Lim C.-M., Divatia J.V., Shrestha B.R., Arabi Y.M., Ng J., Gomersall C.D., Nishimura M., Koh Y., Du B. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020. 8. 506-517.

10. Troyer E.A., Kohn J.N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav. Immun. 2020. doi: 10.1016/j.bbi.2020.04.027.

11. Nath A. Neurologic complications of coronavirus infections. Neurology. 2020. 94. 809-810.

12. Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L., Liu C., Yang C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020. doi: 10.1016/j.bbi.2020.03.031.

13. de Wit E., van Doremalen N., Falzarano D., Munster V. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2020. 14. 523-534.

14. Algahtani H., Subahi A., Shirah B. Neurological complications of Middle East Respiratory Syndrome Coronavirus: a report of two cases and review of the literature. Case Rep. Neurol. Med. 2016. 2016. 3502683.

15. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 395. 565-574.

16. Galougahi M.K., Ghorbani J., Bakhshayeshkaram M., Naeini A.S., Haseli S. Olfactory bulb magnetic resonance imaging in SARS-cov-2-induced anosmia: the first report. Acad. Radiol. 2020. 27. 892-893.

17. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A., Dequanter D., Blecic S., E.l. Afia F., Distinguin L., Chekkoury-Idrissi Y., Hans S., Delgado I.L., Calvo-Henriquez C., Lavigne P., Falanga C., Barillari M.R., Cammaroto G., Khalife M., Leich P., Souchay C., Rossi C., Journe F., Hsieh J., Edjlali M., Carlier R., Ris L., Lovato A., De Filippis C., Coppee F., Fakhry N., Ayad T., Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 2020. doi: 10.1007/s00405-020-05965-1.

18. Spinato G., Fabbris C., Polesel J., Cazzador D., Borsetto D., Hopkins C., Boscolo-Rizzo P. Alterations in smell or taste in mildly symptomatic outpatients with SARS-cov-2 infection. JAMA. 2020. 323. 2089-2090.

19. Giacomelli A., Pezzati L., Conti F., Bernacchia D., Siano M., Oreni L., Rusconi S., Gervasoni C., Ridolfo A.L., Rizzardini G., Antinori S., Galli M. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin. Infect. Dis. 2020. doi: 10.1093/cid/ciaa330.

20. Lovato A., de Filippis C., Marioni G. Upper airway symptoms in coronavirus disease 2019 (COVID-19). Am. J. Otolaryngol. 2020. doi: 10.1016/j.amjoto.2020.102474.

21. Li Y., Wang M., Zhou Y., Chang J., Xian Y., Mao L., Hong C., Chen S., Wang Y., Wang H., Li M., Jin H., Hu B. Acute Cerebrovascular Disease Following COVID-19: A Single Center, Retrospective, Observational Study, Social Science Research Network, Rochester, NY, 2020. Doi: 10.2139/ssrn.3550025

22. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P., De Leacy R.A., Shigematsu T., Ladner T.R., Yaeger K.A., Skliut M., Weinberger J., Dangayach N.S., Bederson J.B., Tuhrim S., Fifi J.T. Large-vessel stroke as a presenting feature of Covid-19 in the young. N. Engl. J. Med. 2020. 382. e60.

23. Filatov A., Sharma P., Hindi F., Espinosa P.S. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus. 2020. 12. e7352.

24. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M., Sakata H., Kondo K., Myose N., Nakao A., Takeda M., Haro H., Inoue O., Suzuki-Inoue K., Kubokawa K., Ogihara S., Sasaki T., Kinouchi H., Kojin H., Ito M., Onishi Н., Shimizu T., Sasaki Y., Enomoto N., Ishihara H., Furuya S., Yamamoto T., Shimada S. A first case of meningi- tis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020. 94. 55-58.

25. Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020. doi: 10.1148/radiol.2020201187.

26. Duong L., Xu P., Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav. Immun. 2020. doi: 10.1016/j.bbi.2020.04.024.

27. Yin R., Feng W., Wang T., Chen G., Wu T., Chen D., Lv T., Xiang D. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. J. Med. Virol. 2020. doi: 10.1002/jmv.25888.

28. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C., Collange O., Boulay C., Fafi-Kremer S., Ohana M., Anheim M., Meziani F. Neurologic features in severe SARS-cov-2 infection. N. Engl. J. Med. 2020. 382. 2268-2270.

29. Gutierrez-Ortiz C., Mendez A., Rodrigo-Rey S., San Pedro-Murillo E., Bermejo-Guerrero L., Gordo-Manas R., de Aragon-Gomez F., Benito-Leon J. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020. doi: 10.1212/WNL.0000000000009619.

30. Toscano G., Palmerini F., Ravaglia S., Ruiz L., Invernizzi P., Cuzzoni M.G., Franciotta D., Baldanti F., Daturi R., Postorino P., Cavallini A., Micieli G. Guillain-Barre Syndrome associated with SARS-cov-2. N. Engl. J. Med. 2020. doi: 10.1056/nejmc2009191.

31. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., Kritek P.A., West T.E., Luks A., Gerbino A., Dale C.R., Goldman J.D., O’Mahony S., Mikacenic C. Covid-19 in critically ill patients in the seattle region — case series. N. Engl. J. Med. 2020. 382. 2012-2022.

32. Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pi-votal link between ACE2 deficiency and SARS-cov-2 infection. Eur. J. Intern. Med. 2020. 76. 14-20.

33. Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors — lessons from available evidence and insights into COVID-19. Hypertens. Res. 2020. doi: 10.1038/s41440-020-0455-8.

34. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med. 2020. 382. 1653-1659.

35. Magrone T., Magrone M., Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensinconverting enzyme 2 as a potential drug target — a perspective. Endocr. Metab. Immune Disord. Drug Targets. 2020. doi: 10.2174/1871530320666200427112902.

36. Li H., Liu S.-M., Yu X.-H., Tang S.-L., Tang C.-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int. J. Antimicrob. Agents. 2020. 55. 105951.

37. Li M.-Y., Li L., Zhang Y., Wang X.-S. Expression of the SARS-cov-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020. 9. 45.

38. Mehta P., McАuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. 395. 10331034.

39. Xiong M., Liang X., Wei Y. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Br. J. Haematol. 2020. doi.org/10.1111/bjh.16725.

40. Spiezia L., Boscolo A., Poletto F., Cerruti L., Tiberio I., Campello E., Navalesi P., Simioni P. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020. 120. 998-1000.

41. Steenblock C., Todorov V., Kanczkowski W., Eisenhofer G., Schedl A., Wong M.-L., Licinio J., Bauer M., Young A.H., Gainetdinov R.R., Bornstein S.R. Severe acute respiratory syndrome coronavirus 2 (SARS-cov-2) and the neuroendocrine stress axis. Mol. Psychiatry. 2020. doi: 10.1038/s41380-020-0758-9

42. Heffner K.L. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol. Allergy Clin. North Am. 2011. 31. 95-108.

43. Rogers J.P., Chesney E., Oliver D., Pollak T.A., McGuire P., Fusar-Poli P., Zandi M.S., Lewis G., David A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020. doi: 10.1016/S2215-0366(20)30203-0.

44. Xydakis M.S., Dehgani-Mobaraki P., Holbrook E.H., Geisthoff U.W., Bauer C., Hautefort C., Herman P., Manley G.T., Lyon D.M., Hopkins C. Smell and taste dysfunction in patients with COVID-19. Lancet Infect. Dis. 2020. doi: 10.1016/S1473-3099(20)30293-0.

45. Vaira L.A., Salzano G., Deiana G., Riu G.D. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020. doi.org/10.1002/lary.28692.

46. Small D.M., Prescott J. Odor/taste integration and the perception of flavor. Exp. Brain Res. 2005. 166. 345-357.

47. Vaira L.A., Salzano G., Fois A.G., Piombino P., Riu G.D. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int. Forum Allergy Rhinol. 2020. doi.org/10.1002/alr.22593.

48. Yan C.H., Faraji F., Prajapati D.P., Boone C.E., DeConde A.S. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int. Forum Allergy Rhinol. 2020. doi: 10.1002/alr.22579.

49. Sungnak W., Huang N., Becavin C., Berg M., Queen R., Litvinukova M., Talavera-Lopez C., Maatz H., Reichart D., Sampaziotis F., Worlock K.B., Yoshida M., Barnes J.L. SARS-cov-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020. 26. 681-687.

50. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T., Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020. 12. 8.

51. Conde Cardona G., Quintana Pajaro L.D., Quintero Marzola I.D., Ramos Villegas Y., Moscote Salazar L.R. Neurotropism of SARS-cov-2: mechanisms and manifestations. J. Neurol. Sci. 2020. 412. 116824.

52. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020. 11. 995-998.

53. Butowt R., Bilinska K. SARS-cov-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem. Neurosci. 2020. 11. 1200-1203.

54. Vaira L.A., Hopkins C., Salzano G., Petrocelli M., Melis A., Cucurullo M., Ferrari M., Gagliardini L., Pipolo C., Deiana G., Fiore V., De Vito A., Turra N., Canu S., Maglio A., Serra A., Bussu F., Madeddu G., Babudieri S., Giuseppe Fois A., Pirina P., Salzano F.A., De Riu P., Biglioli F., De Riu G. Olfactory and gustatory function impairment in COVID-19 patients: Italian objective multicenter study. Head Neck. 2020. doi: 10.1002/hed.26269.

55. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., Zhuang H., Wu B., Zhong H., Shao H., Fang W., Gao D., Pei F., Li X., He Z., Xu D., Shi X., Anderson V.M., Leong A.S.-Y. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005. 202. 415-424.

56. Cao Y., Li L., Feng Z., Wan S., Huang P., Sun X., Wen F., Huang X., Ning G., Wang W. Comparative genetic analysis of the novel coronavirus (2019-ncov/SARS-cov-2) receptor ACE2 in different populations. Cell. Discov. 2020. 6. 11.

57. Li W., Zhang C., Sui J., Kuhn J.H., Moore M.J., Luo S., Wong S.-K., Huang I.-C., Xu K., Vasilieva N., Murakami A., He Y., Marasco W.A., Guan Y., Choe H., Farzan M. Receptor and viral determinants of SARS-coronavirns adaptation to human ACE2. EMBO J. 2005. 24. 1634-1643.

58. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020. 8. e21.

59. Zhou B., She J., Wang Y., Ma X. A case of coronavirus disease 2019 with concomitant acute cerebral infarction and deep vein thrombosis. Front. Neurol. 2020. 11. 296.

60. Carter S.J., Baranauskas M.N., Fly A.D. Considerations for obesity, vitamin D, and physical activity amidst the COVID-19 pandemic. Obesity (Silver Spring). 2020. doi: 10.1002/oby.22838

61. Sattar N., Mcinnes I.B., Mcmurray J.J.V. Obesity a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation. 2020. doi: 10.1161/CIRCULATION- AHA.120.047659.

62. Umapathi T., Kor A.C., Venketasubramanian N., Lim C.C.T., Pang B.C., Yeo T.T., Lee C.C., Lim P.L., Ponnudurai K., Chuah K.L., Tan P.H., Tai D.Y.H., Ang S.P.B. Large artery ischaemic stroke in severe acute respiratory syndrome (SARS). J. Neurol. 2004. 251. 1227-1231.

63. Avula A., Nalleballe K., Narula N., Sapozhnikov S., Dandu V., Toom S., Glaser A., Elsayegh D. COVID-19 presenting as stroke. Brain Behav. Immun. 2020. doi: 10.1016/j.bbi.2020.04.077.

64. Basu-Ray I., Soos M.P. Cardiac manifestations of coronavirus (COVID-19). Statpearls. Statpearls Publishing, Treasure Island, FL, 2020.

65. Jose R.J., Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020. doi: 10.1016/S2213-2600(20)30216-2.

66. Wang H.-Y., Li X.-L., Yan Z.-R., Sun X.-P., Han J., Zhang B.-W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020. 13. 175628642091783.

67. Delanghe J.R., Speeckaert M.M., De Buyzere M.L. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin. Chim. Acta. 2020. 505. 192-193.

68. Kotfis K., Williams Roberson S., Wilson J.E., Dabrowski W., Pun B.T., Ely E.W. COVID-19: ICU delirium management during SARS-cov-2 pandemic. Crit. Care. 2020. 24. 176.

69. Zambrelli E., Canevini M., Gambini O., D’Agostino A. Delirium and sleep disturbances in COVID-19: a possible role for melatonin in hospitalized patients? Sleep Med. 2020. 70. 111.

70. van Vliet E.A., da Costa Araujo S., Redeker S., van Schaik R., Aronica E., Gorter J.A. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007. 130. 521-534.

71. Sweeney M.D., Sagare A.P., Zlokovic B.V. Blood-brain barrier breakdown in Alzheimer’s disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018. 14. 133-150.

72. Xu J., Zhong S., Liu J., Li L., Li Y., Wu X., Li Z., Deng P., Zhang J., Zhong N., Ding Y., Jiang Y. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine Mig in pathogenesis. Clin. Infect. Dis. 2005. 41. 1089-1096.

73. Li Y.-C., Bai W.-Z., Hashikawa T. Response to Commentary on “The neuroinvasive potential of SARS-cov-2 may play a role in the respiratory failure of COVID-19 patients”. J. Med. Virol. 2020. doi: 10.1002/jmv.25824.

74. Ye M., Ren Y., Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immun. 2020. doi: 10.1016/j.bbi.2020.04.017.

75. Al Saiegh F., Ghosh R., Leibold A., Avery M.B., Schmidt R.F., Theofanis T., Mouchtouris N., Philipp L., Peiper S.C., Wang Z.-X., Rincon F., Tjoumakaris S.I., Jabbour P., Rosenwasser R.H., Gooch M.R. Status of SARS-cov-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J. Neurol. Neurosurg. Psychiatry. 2020. doi: 10.1136/jnnp-2020-323522.

76. Zhao H., Shen D., Zhou H., Liu J., Chen S. Guillain-Barre syndrome associated with SARS-cov-2 infection: causality or coincidence? Lancet Neurol. 2020. 19. 383-384.

77. Sedaghat Z., Karimi N. Guillain-Barre syndrome associated with COVID-19 infection: A case report. J. Clin. Neurosci. 2020. 76. 233-235.

78. Ang C.W., Jacobs B.C., Laman J.D. The Guillain-Barre syndrome: a true case of molecular mimicry. Trends Immunol. 2004. 25. 61-66.

79. Guidon A.C., Amato A.A. COVID-19 and neuromuscular disorders. Neurology. 2020. 94. 959-969.

80. Li Z., Huang Y., Guo X. The brain, another potential target organ, needs early protection from SARS-cov-2 neuroinvasion. Sci China Life Sci. 2020. 63. 771-773.

81. Li Y., Bai W., Hashikawa T. The neuroinvasive potential of SARS-cov2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020. 92. 552-555.

82. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., Goor H. van. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004. 203. 631-637.

83. Lippi A., Domingues R., Setz C., Outeiro T.F., Krisko A. SARS-cov-2: at the crossroad between aging and neurodegeneration. Mov. Disord. 2020. 35. 716-720.

84. Fazzini E., Fleming J., Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov. Disord. 1992. 7. 153-158.

85. Murray R.S., Cai G.Y., Hoel K., Johnson S., Cabirac G.F. Coronaviruses and multiple sclerosis. Adv. Exp. Med. Biol. 1993. 342. 353-357.

86. Fotuhi M., Hachinski V., Whitehouse P.J. Changing perspectives regarding late-life dementia. Nat. Rev. Neurol. 2009. 5. 649-658.

87. Fotuhi M., Do D., Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat. Rev. Neurol. 2012. 8. 189-202.

88. Brown E.E., Kumar S., Rajji T.K., Pollock B.G., Mulsant B.H. Anticipating and mitigating the impact of the COVID-19 pandemic on Alzheimer’s disease and related dementias. Am. J. Geriatr. Psychiatry. 2020. doi: 10.1016/j.jagp.2020.04.010.

89. Siniscalchi A., Gallelli L. Could COVID-19 represents a negative prognostic factor in patients with stroke? Infect. Control. Hosp. Epidemiol. 2020. doi: 10.1017/ice.2020.146.

90. Manji H., Carr A.S., Brownlee W.J., Lunn M.P. Neurology in the time of COVID-19. J. Neurol. Neurosurg. Psychiatry. 2020. 91. 568-570.

91. Lu L., Xiong W., Liu D., Liu J., Yang D., Li N., Mu J., Guo J., Li W., Wang G., Gao H., Zhang Y., Lin M., Chen L., Shen S., Zhang H., Sander J.W., Luo J., Chen S., Zhou D. New-onset acute symptomatic seizure and risk factors in Corona Virus Disease 2019: a retrospective multicenter study. Epilepsia. 2020. doi: 10.1111/epi.16524.

Друкується в скороченій версії. Повна версія статті доступна англійською мовою в Journal of Alzheimer’s Disease, 2020; 76: 3-19. DOI 10.3233/JAD-200581.


Back to issue