Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

"Pain. Joints. Spine." Том 7, №3, 2017

Back to issue

Молекулярно-клітинні механізми захисної дії вітаміну D3 при експериментальному преднізолон-індукованому остеопорозі

Authors: Шиманський І.О., Лісаковська О.О., Великий М.М.
Інститут біохімії ім. О.В. Палладіна НАН України, м. Київ, Україна

Categories: Rheumatology, Traumatology and orthopedics

Sections: Clinical researches

print version


Summary

Актуальність. Довготривале введення глюкокортикоїдів (ГК) супроводжується порушенням мінерального обміну і, як наслідок, призводить до розвитку вторинного остеопорозу. Важливу роль у регулюванні процесу ремоделювання кісткової тканини відіграє вітамін D, який може реалізовувати свої біо­логічні ефекти через рецептор вітаміну D — VDR-опосередкований вплив на цитокінові системи, зокрема RANKL-RANK-OPG (ліганд рецептора активатора ядерного фактора транскрипції NF-κB — рецептор RANKL — остеопротегерин). Мета. Дослідження ГК-індукованих змін експресії детермінантних для процесів формування та резорбції кісткової тканини регуляторних протеїнів (RANK, RANKL, OPG, остеокальцин, VDR) залежно від біодоступності вітаміну D. Матеріали та методи. Щури-самиці лінії Wistar отримували преднізолон (5 мг/кг маси тіла) разом з вітаміном D3 (100 МО) або без нього протягом 30 днів. Рівні VDR, остеокальцину, RANK, RANKL і OPG у кістковій тканині визначали за методом вестерн-блот-аналізу. Рівень гідроксивітаміну D (25OHD) у сироватці крові аналізували, використовуючи метод ELISA. Вміст мінеральних компонентів (Ca2+ та Pi), активність лужної фосфатази (ЛФ) та її ізоформ визначали спектрофотометрично. Результати. Преднізолон значно знижував рівень 25OHD у сироватці крові та вміст протеїну VDR у кістковій тканині. Це супроводжувалось підвищенням загальної активності сироваткової ЛФ і її кісткової ізоформи, гіпокальціємією, гіпофосфатемією, а також зниженням вмісту мінеральних компонентів у кістковій тканині. Спостерігалось значне зниження експресії остеокальцину, ключового маркера остеосинтезу. Зміни у D-вітамінному статусі тварин, викликані ГК, призводили до зниження рівня RANK та OPG у кістковій тканині, тоді як рівень RANKL залишався без змін. Уведення вітаміну D3, підвищуючи рівні 25OHD і VDR, сприяло частковій або повній нормалізації викликаних преднізолоном змін мінерального обміну й кісткового гомеостазу через підвищення рівнів RANK, OPG та остеокальцину. Висновки. Преднізолон-індуковане дерегулювання цитокінової системи RANKL — RANK — OPG та остеокальцин-опосередковане формування кісткової тканини можуть бути тісно пов’язані зі зниженням біодоступності вітаміну D і порушенням клітинного сигналювання через VDR. Відновлення біодоступності вітаміну D є необхідною умовою, що протидіє негативним ефектам глюкокортикоїдної терапії у кістковій тканині.

Актуальность. Длительное введение глюкокортикоидов (ГК) сопровождается нарушением минерального обмена и, как следствие, приводит к развитию вторичного остеопороза. Важную роль в регулировании процесса ремоделирования костной ткани играет витамин D, который может реализовывать свои биологические эффекты через рецептор витамина D (VDR) — опо­средованное влияние на цитокиновые системы, в частности RANKL — RANK — OPG (лиганд рецептора активатора ядерного фактора транскрипции NF-κB — рецептор RANKL — остеопротегерин). Цель. Изучение ГК-индуцированных изменений экспрессии детерминантных для процессов формирования и резорбции костной ткани регуляторных протеинов (RANK, RANKL, OPG, остеокальцин, VDR) в зависимости от биодоступности витамина D. Материалы и методы. Самки крыс линии Wistar получали преднизолон (5 мг/кг массы тела) совместно с витамином D3 (100 МЕ) или без него в течение 30 дней. Уровни VDR, остеокальцина, RANK, RANKL и OPG в костной ткани определяли методом вестерн-блот-анализа. Уровень 25-гидроксивитамина D (25OHD) в сыворотке крови анализировали с помощью метода ELISA. Содержание минеральных компонентов (Ca2+ и Pi), активность щелочной фосфатазы (ЛФ) и ее изоформ определяли спектрофотометрически. Результаты. Преднизолон значительно снижал уровень 25OHD в сыворотке крови и содержание протеина VDR в костной ткани. Это сопровождалось повышением общей активности сывороточной ЛФ и ее костной изоформы, гипокальциемией, гипофосфатемией, а также снижением содержания минеральных компонентов в костной ткани. Наблюдалось значительное снижение экспрессии остеокальцина, ключевого маркера остеосинтеза. Изменения в D-витаминном статусе животных, вызванные ГК, приводили к снижению уровня RANK и OPG в костной ткани, тогда как уровень RANKL оставался без изменений. Введение витамина D3, повышая уровни 25OHD и VDR, способствовало частичной или полной нормализации вызванных преднизолоном изменений минерального обмена и гомеостаза костной ткани за счет повышения уровней RANK, OPG и остеокальцина. Выводы. Преднизолон-индуцированная дерегуляция цитокиновой системы RANKL — RANK — OPG и остеокальцин-опосредованного формирования костной ткани может быть тесно связана со снижением биодоступности витамина D и нарушением клеточного сигналинга через VDR. Нормализация био­доступности витамина D является необходимым условием, обеспечивающим противодействие негативным эффектам глюкокортикоидной терапии в костной ткани.

Background. Osteoporosis is the most common side effect of glucocorticoid (GC) therapy. Vitamin D is known to play a crucial role in bone remodeling, but the precise molecular mechanisms of its action on GC-induced impairments of cytokine systems, in particular RANK (receptor activator of nuclear factor kappa-B)/RANKL (RANK ligand)/OPG (osteoprotegerin), are still controversial. Thus, the purpose of the study was to evaluate GC-induced changes in the RANK/RANKL/OPG system and osteocalcin synthesis in rat bone depending on vitamin D bioavailability and vitamin D receptor (VDR) expression. Materials and methods. Female Wistar rats received prednisolone (5 mg/kg b.w.) with or without 100 IU of vitamin D3 (for 30 days). The levels of VDR, osteocalcin, RANK, RANKL and OPG in bone tissue were determined by western blotting. Blood serum 25OHD was assayed by enzyme-linked immunosorbent assay. The levels of Ca2+, Pi, activity of alkaline phosphatase (AP) and its bone isoenzyme were determined using spectrophotometry. Results. Prednisolone significantly lowered 25OHD content in the blood serum and VDR level in bone tissue that has been accompanied by an elevation of the AP bone isoenzyme activity in the blood serum, hypocalcemia and hypophosphatemia. A significant decrease in the expression of osteocalcin, a well-known marker of bone formation, was also observed. GC-induced disturbances in vitamin D status led to a reduction of the RANK and OPG level, while RANKL level was unaffected. Vitamin D3 administration restored 25OHD and VDR levels that resulted in amelioration of GC-induced changes in bone tissue and normalization of mineral metabolism through elevation of RANK, OPG and osteocalcin levels. Conclusions. Prednisolone-induced imbalance in the RANK/RANKL/OPG and osteocalcin systems is related to the reduction of vitamin D bioavailability and impairments in VDR signaling. Thus, normalization of vitamin D bioavailability might be perspective in reducing the negative effects of GC on bone homeostasis.


Keywords

преднізолон; остеопороз; вітамін D; рецептор вітаміну D; остеокіни; ремоделювання кісткової тканини

преднизолон; остеопороз; витамин D3; рецептор витамина D; остеокины; ремоделирование костной ткани

prednisolone; osteoporosis; vitamin D; vitamin D receptor; osteokines; bone tissue remodeling


For the full article you need to subscribe to the magazine.


Bibliography

1. Zofkova I, Blahos J. New molecules modulating bone metabolism - new perspectives in the treatment of osteoporosis. Physiol Res. 2017 Sep 26;66(Supplementum 3):S341-S347. PMID: 28948818.
2. Wacker M, Holick MF. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients.2013 Jan 10;5(1):111-48. doi: 10.3390/nu5010111.
3. Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1-2):20-32. doi: 10.1159/000362724.
4. Hartmann K, Koenen M, Schauer S, et al. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol Rev. 2016 Apr;96(2):409-47. doi: 10.1152/physrev.00011.2015.
5. Pereira RM, Carvalho JF, Canalis E. Glucocorticoid-induced osteoporosis in rheumatic diseases. Clinics (Sao Paulo). 2010 Nov; 65(11):1197-1205. doi: 10.1590/S1807-59322010001100024.
6. Xiao W, Wang Y, Pacios S, Li S, Graves DT. Cellular and molecular aspects of bone remodeling. Front Oral Biol. 2016;18:9-16. doi: 10.1159/000351895. 
7. Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep. 2015 May;11(5):3212-8. doi: 10.3892/mmr.2015.3152.
8. Takayanagi H. New developments in osteoimmunology. Nat Rev Rheumatol. 2012 Nov;8(11):684-9. doi: 10.1038/nrrheum.2012.167.
9. Canalis E. Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab. 1996 Oct;81(10):3441-7. doi: 10.1210/jcem.81.10.8855781.
10. Brändström H, Bjorkman T, Ljunggren O. Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells. Biochem Biophys Res Commun. 2001 Jan 26;280(3):831-5. doi: 10.1006/bbrc.2000.4223.
11. Shi C, Qi J, Huang P, et al. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone. 2014 Nov;68:67-75. doi: 10.1016/j.bone.2014.08.004.
12. Kinoshita Y, Masuoka K, Miyakoshi S, Taniguchi S, Takeuchi Y. Vitamin D insufficiency underlies unexpected hypocalcemia following high dose glucocorticoid therapy. Bone. 2008 Jan;42(1):226-8. doi: 10.1016/j.bone.2007.09.042.
13. Pludowski P, Grant WB, Bhattoa HP, et al. Vitamin D status in central Europe. Int J Endocrinol. 2014;2014:589587. doi: 10.1155/2014/589587.
14. Guessous I. Role of Vitamin D deficiency in extraskeletal complications: predictor of health outcome or marker of health status? Biomed Res Int. 2015;2015:563403. doi: 10.1155/2015/563403.
15. Komissarenko YuI, Bobryk MI. Autoimmune Disorders in Endocrine Pathology. A New Look on the Diagnosis and Management. According to the Materials of 18th European Congress of Endocrinology (Munich, May 2016). Mezhdunarodnyi Endokrinologicheskii Zhurnal. 2016;76(4):41-4. doi: 10.22141/2224-0721.4.76.2016.77797. (in Russian).
16. Montecino MA, Lian JB, Stein JL, Stein JS, van Wijnen AJ, Cruzat F. Biological and molecular effect of vitamin D on bone. In: Holick MF. Vitamin D. Physiology, molecular biology, and clinical applications. Totowa, USA: Humana Press; 2010. 1160 p.
17. Tanner SB, Harwell SA. More than healthy bones: a review of vitamin D in muscle health. Ther Adv Musculoskelet Dis. 2015 Aug;7(4):152-9. doi: 10.1177/1759720X15588521.
18. Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A. Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord. 2017 Mar;22(1):27-41. doi: 10.1007/s40519-016-0312-6.
19. Kvashnina LV. Immunomodulatory properties of vitamin D in children. Zdorov’ye Rebenka. 2013;7(50):134-8. (in Russian).
20. Li H, Xie H, Fu M, et al. 25-hydroxyvitamin D3 ameliorates periodontitis by modulating the expression of inflammation-associated factors in diabetic mice. Steroids. 2013 Feb;78(2):115-20. doi: 10.1016/j.steroids.2012.10.015.
21. Dyce BJ, Bessman SP. A rapid nonenzimatic assay for 2,3-DPG in multiple specimens of blood. Arch Environ Health. 1973 Aug;27(2):112-5. PMID: 4721197.
22. Vroon DH, Israili Z, authors; Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd edition. Boston: Butterworths; 1990. 1087 p.
23. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5. PMID: 5432063.
24. Lapach SN, Chubenko AV, Babich PN. Statisticheskie metody v mediko-biologicheskikh issledovaniiakh s ispol’zovaniem Excel [Statistical methods in biomedical studies using Excel]. Kiev: Morion; 2000. 320 p. (in Russian).
25. Povorozniuk VV, Dedukh NV, Grigor’eva NV, Gopkalova IV. Eksperimental’nyi osteoporoz [Experimental osteoporosis]. Kiev: Ekspress; 2012. 228 p. (in Russian).
26. Matsubara R, Kukita T, Ichigi Y, et al. Characterization and identification of subpopulations of mononuclear preosteoclasts induced by TNF-α in combination with TGF-β in rats. PLoS One. 2012; 7(10): e47930. doi:  10.1371/journal.pone.0047930.
27. Song L. Calcium and Bone Metabolism Indices. Adv Clin Chem. 2017;82:1-46. doi: 10.1016/bs.acc.2017.06.005.
28. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanism of their deleterious effects on bone. J Clin Invest. 1998 Jul 15;102(2):274-82. doi: 10.1172/JCI2799.
29. Lisakovska O, Shymanskyy I, Mazanova A, Khomenko A, Veliky M. Vitamin D3 protects against prednisolone-induced liver injury associated with the impairment of the hepatic NF-κB/iNOS/NO pathway. Biochem Cell Biol. 2017 Apr;95(2):213-22. doi: 10.1139/bcb-2016-0070.
30. St-Arnaud R, Naja RP. Vitamin D metabolism, cartilage and bone fracture repair. Mol Cell Endocrinol. 2011 Dec 5;347(1-2):48-54. doi: 10.1016/j.mce.2011.05.018.

Similar articles

Correction of bone remodeling disorders in long­term corticosteroid therapy
Authors: Кутасевич Я.Ф., Олійник І.О., Маштакова І.О., Абдалла А.Е.
ДУ «Інститут дерматології та венерології НАМН України», м. Харків, Україна

International journal of endocrinology Том 15, №2, 2019
Date: 2019.05.30
Categories: Endocrinology
Sections: Clinical researches
Features of bone metabolism in patients with osteoarthritis, type 2 diabetes mellitus and their combination
Authors: Журавльова Л.В., Олійник М.О.
Харківський національний медичний університет, м. Харків, Україна

"Pain. Joints. Spine." Том 8, №2, 2018
Date: 2018.07.27
Categories: Rheumatology, Traumatology and orthopedics
Sections: Clinical researches
Authors: Вертегел А.О., Овчаренко Л.С., Запорізька медична академія післядипломної освіти
"Child`s Health" 2 (23) 2010
Date: 2010.08.11
Categories: Pediatrics/Neonatology
Osteopetrosis: classification, pathomorphology, genetic disorders, clinical manifestations (literature review and clinical case report)
Authors: Поворознюк В.В., Дєдух Н.В., Бистрицька М.А., Мусієнко А.С.
Державна установа «Інститут геронтології імені Д.Ф. Чеботарьова НАМН України», м. Київ, Україна

"Pain. Joints. Spine." Том 9, №2, 2019
Date: 2019.07.31
Categories: Rheumatology, Traumatology and orthopedics
Sections: Specialist manual

Back to issue