Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

"Child`s Health" Том 12, №8, 2017

Back to issue

Development of the immune response in pneumonia due to Staphylococcus aureus (part 7)

Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

Categories: Pediatrics/Neonatology

Sections: Specialist manual

print version


Summary

У статті на підставі літературних даних продемонстровано роль клітинних реакцій у розвитку імунної відповіді при пневмонії, спричиненої Staphylococcus aureus. Описано механізми взаємодії Staphylococcus aureus із вродженими лімфоїдними клітинами, Т-лімфоцитами. Наведена порівняльна характеристика рецепторного апарату NK-клітин, описано механізми кiлинга інфікованих клітин iмуноцитами вродженої імунної системи.

В статье на основании литературных данных продемонстрирована роль клеточных реакций в развитии иммунного ответа при пневмонии, вызванной Staphylococcus aureus. Описаны механизмы взаимодействия Staphylococcus aureus с врожденными лимфоидными клетками, Т-лимфоцитами. Дана сравнительная характеристика рецепторного аппарата NK-клеток, описаны механизмы киллинга инфицированных клеток иммуноцитами врожденной иммунной системы.

The article on the basis of literature data demonstrates the role of cellular reactions in the development of the immune response in pneumonia caused by Staphylococcus aureus. Тhe report describes mechanisms of interaction between Staphylococcus aureus and innate lymphoid cells, ­T-lymphocytes. The article compares NK-cells receptor systems and describes mechanisms of infected cell killing by the innate immune cells.


Keywords

пневмонія; імунна відповідь; Staphylococcus aureus; Т-лімфоцити; NK-клітини

пневмония; иммунный ответ; Staphylococcus aureus; Т-лимфоциты; NK-клетки

pneumonia; immune response; Staphylococcus aureus; T-lymphocytes; NK-cells


For the full article you need to subscribe to the magazine.


Bibliography

1. Ahn Y.O. Human group3 innate lymphoid cells express DR3 and respond to TL1A with enhanced IL-22 production and –IL-2-dependent proliferation / Ahn Y.O., Weeres M.A., Neulen M.L. et al. // Eur. J. Immunol. 2015 Aug; 45(8): 2335-42. doi: 10.1002/eji.201445213.
2. Archer N.K. Interleukin-17A (IL-17A) and IL-17F Are Critical for Antimicrobial Peptide Production and Clearance of Staphylococcus aureus Nasal Colonization / N.K. Archer, N.D. Adappa, J.N. Palmer et al. // Infect. Immun. 2016 Nov 18; 84(12): 3575-3583.
3. Aron J.L., Akbari O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma // Allergy. 2017 Feb 4. doi: 10.1111/all.13139.
4. Attaf M. The T cell antigen receptor: the Swiss army knife of the immune system / M. Attaf, M. Legut, D.K. Cole, A.K. Sewell // Clin. Exp. Immunol. 2015 Jul; 181(1): 1-18. doi: 10.1111/cei.12622.
5. Bekeredjian-Ding I., Stein C., Uebele J. The Innate Immune Response Against Staphylococcus aureus // Curr. Top. Microbiol. Immunol. 2015 Dec 15. doi: 10.1007/82_2015_5004.
6. Berzins S.P., Smyth M.J., Baxter A.G. Presumed guilty: natural killer T cell defects and human disease // Nat. Rev. Immunol. 2011 Feb; 11(2): 131-42. doi: 10.1038/nri2904.
7. Birkholz A.M., Kronenberg M. Antigen specificity of invariant natural killer T-cells // Biomed. J. 2015 Dec; 38(6): 470-83. doi: 10.1016/j.bj.2016.01.003.
8. Born W.K., Kemal Aydintug M., O’Brien R.L. Diversity of γδ T-cell antigens // Cell. Mol. Immunol. 2013 Jan; 10(1): 13-20. doi: 10.1038/cmi.2012.45.
9. Brennan P.J. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions / P.J. Brennan, M. Brigl, M.B. Brenner et al. // Nat. Rev. Immunol. 2013 Feb; 13(2): 101-17. doi: 10.1038/nri3369.
10. Brigl M., Brenner M.B. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens // Semin. Immunol. 2010 Apr; 22(2): 79-86. doi: 10.1016/j.smim.2009.10.006.
11. Buechel H.M., Stradner M.H., D’Cruz L.M. Stages versus subsets: Invariant Natural Killer T cell lineage differentiation // Cytokine. 2015 Apr; 72(2): 204-9. doi: 10.1016/j.cyto.2014.12.0050.
12. Chandra S., Kronenberg M. Activation and Function of iNKT and MAIT Cells // Adv. Immunol. 2015; 127: 145-201. doi: 10.1016/bs.ai.2015.03.003.
13. Cheng H. Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung / H. Cheng, C. Jin, J. Wu et al. // Protein Cell. 2017 Mar 7. doi: 10.1007/s13238-017-0379-5.
14. Cheng M. Microbiota modulate tumoral immune surveillance in lung through a γδT17 immune cell-dependent mechanism / M. Cheng, L. Qian, G. Shen et al. // Cancer Res. 2014 Aug 1; 74(15): 4030-41. doi: 10.1158/0008-5472.CAN-13-2462.
15. Cheng P. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia / P. Cheng, T. Liu, W.Y. Zhou et al. // BMC Immunol. 2012 Jul 9; 13: 38. doi: 10.1186/1471-2172-13-38.
16. Cording S. Development and regulation of RORγt(+) innate lymphoid cells / S. Cording, J. Medvedovic, M. Cherrier, G. Eberl // FEBS Lett. 2014 Nov 17; 588(22): 4176-81. doi: 10.1016/j.febslet.2014.03.034.
17. Cortez V.S., Colonna M. Diversity and function of group 1 innate lymphoid cells // Immunol. Lett. 2016 Nov; 179: 19-24. doi: 10.1016/j.imlet.2016.07.005. 
18. Cowley S.C. MAIT cells and pathogen defense // Cell. Mol. Life Sci. 2014 Dec; 71(24): 4831-40. doi: 10.1007/s00018-014-1708-y.
19. Crosby C.M., Kronenberg M. Invariant natural killer T cells: front line fighters in the war against pathogenic microbes // Immunogenetics. 2016 Aug; 68(8): 639-48. doi: 10.1007/s00251-016-0933-y.
20. Cua D.J., Tato C.M. Innate IL-17-producing cells: the sentinels of the immune system // Nat. Rev. Immunol. 2010 Jul; 10(7): 479-89. doi: 10.1038/nri2800.
21. Dhodapkar M.V., Kumar V. Type II NKT Cells and Their Emerging Role in Health and Disease // J Immunol. 2017 Feb 1; 198(3): 1015-1021. doi: 10.4049/jimmunol.1601399.
22. Dieli F. Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction / F. Dieli, G. Sireci, D. Russo et al. // J. Exp. Med. 2000 Dec 4; 192(11): 1645-52. PMID: 11104806.
23. Dudal S. Release of LL-37 by activated human Vgamma9Vdelta2 T cells: a microbicidal weapon against Brucella suis / S. Dudal, C. Turriere, S. Bessoles et al. // J. Immunol. 2006 Oct 15; 177(8): 5533-9. doi: 10.4049/jimmunol.177.8.5533.
24. Eckle S.B. Recognition of Vitamin B Precursors and Bypro–ducts by Mucosal Associated Invariant T Cells / S.B. Eckle, A.J. Corbett, A.N. Keller et al. // J. Biol. Chem. 2015 Dec 18; 290(51): 30204-11. doi: 10.1074/jbc.R115.685990.
25. Espinosa E. Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human gamma delta T cells / E. Espinosa, C. Belmant, F. Pont et al. // J. Biol. Chem. 2001 May 25; 276(21): 18337-44. doi: 10.1074/jbc.M100495200.
26. Franciszkiewicz K. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells / K. Franciszkiewicz, M. Salou, F. Legoux et al. // Immunol. Rev. 2016 Jul; 272(1): 120-38. doi: 10.1111/imr.12423.
27. Fraser J.D., Proft T. The bacterial superantigen and superantigen-like proteins // Immunol. Rev. 2008 Oct; 225: 226-43. doi: 10.1111/j.1600-065X.2008.00681.x.
28. Gao Y., Williams A.P. Role of Innate T Cells in Anti-Bacterial Immunity // Front. Immunol. 2015 Jun 11; 6: 302. doi: 10.3389/fimmu.2015.00302.
29. Georgel P. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice / P. Georgel, M. Radosavljevic, C. Macquin, S. Bahram // Mol. Immunol. 2011 Feb; 48(5): 769-75. doi: 10.1016/j.molimm.2010.12.002.
30. Gober H.J. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells / H.J. Gober, M. Kistowska, L. Angman et al. // J. Exp. Med. 2003 Jan 20; 197(2): 163-8. doi: 10.1084/jem.20021500.
31. Hao J. Current progress in γδ T-cell biology / J. Hao, X. Wu, S. Xia et al. // Cell. Mol. Immunol. 2010 Nov; 7(6): 409-13. doi: 10.1038/cmi.2010.50.
32. Harly C. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset / C. Harly, Y. Guillaume, S. Nedellec et al. // Blood. 2012 Sep 13; 120(11): 2269-79. doi: 10.1182/blood-2012-05-430470.
33. Hayworth J.L. CD1d-independent activation of mouse and human iNKT cells by bacterial superantigens / J.L. Hayworth, D.M. Mazzuca, S. Maleki Vareki et al. // Immunol. Cell. Biol. 2012 Aug; 90(7): 699-709. doi: 10.1038/icb.2011.90.
34. Hazenberg M.D., Spits H. Human innate lymphoid cells // Blood. 2014 Jul 31; 124(5): 700-9. doi: 10.1182/blood-2013-11-427781.
35. Hinks T.S. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease // Immuno–logy. 2016 May; 148(1): 1-12. doi: 10.1111/imm.12582.
36. Hu C.K. The role of hepatic invariant NKT cells in systemic/local inflammation and mortality during polymicrobial septic shock / C.K. Hu, F. Venet, D.S. Heffernan et al. // J. Immunol. 2009 Feb 15; 182(4): 2467-75. doi: 10.4049/jimmunol.0801463.
37. Ivanov S., Paget C., Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus // PLoS Pathog. 2014 Oct 9; 10(10): e1004300. doi: 10.1371/journal.ppat.1004300.
38. Jiao Y. Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells / Y. Jiao, N.D. Huntington, G.T. Belz, C. Seillet // Front. Immunol. 2016 Oct 12; 7: 426. doi: 10.3389/fimmu.2016.00426.
39. Johansson M.A. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional a Unconventional T cells and NK Cells / M.A. Johansson, S. Björkander, M. Mata Forsberg et al. // Front. Immunol. 2016 Jul 11; 7: 273. doi: 10.3389/fimmu.2016.00273.
40. Kalyan S., Kabelitz D. Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic // Cell. Mol. Immunol. 2013 Jan; 10(1): 21-9. doi: 10.1038/cmi.2012.44.
41. Kirby A.C. Evidence for the involvement of lung-speci–fic gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection / A.C. Kirby, D.J. Newton, S.R. Carding, P.M. Kaye // Eur. J. Immunol. 2007 Dec; 37(12): 3404-13. doi: 10.1002/eji.200737216.
42. Kirby A.C. Pulmonary dendritic cells and alveolar macrophages are regulated by gammadelta T cells during the resolution of S. pneumoniae-induced inflammation / A.C. Kirby, D.J. Newton, S.R. Carding, P.M. Kaye // J. Pathol. 2007 May; 212(1): 29-37. doi: 10.1002/path.2149.
43. Kohlgruber A.C. Activation strategies for invariant natural killer T cells / A.C. Kohlgruber, C.A. Donado, N.M. LaMarche et al. // Immunogenetics. 2016 Aug; 68(8): 649-63. doi: 10.1007/s00251-016-0944-8.
44. Kumar V., Delovitch T.L. Different subsets of natural killer T cells may vary in their roles in health and disease // Immunology. 2014 Jul; 142(3): 321-36. doi: 10.1111/imm.12247.
45. Kurioka A. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets / A. Kurioka, J.E. Ussher, C. Cosgrove et al. // Mucosal. Immunol. 2015 Mar; 8(2): 429-40. doi: 10.1038/mi.2014.81.
46. Kwiecinski J. Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway / J. Kwiecinski, S. Rhost, L. Löfbom et al. // Infect. Immun. 2013 Apr; 81(4): 1114-20. doi: 10.1128/IAI.01334-12.
47. Le Bourhis L. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells / Le Bourhis L., M. Dusseaux, A. Bohineust et al. // PLoS Pathog. 2013; 9(10): e1003681. doi: 10.1371/journal.ppat.1003681.
48. Le Bourhis L. Antimicrobial activity of mucosal-associated invariant T cells / L. Le Bourhis, E. Martin, I. Péguillet et al. // Nat. Immunol. 2010 Aug; 11(8): 701-8. doi: 10.1038/ni.1890.
49. Marashian S.M. Role of Innate Lymphoid Cells in Lung Dise–ase / S.M. Marashian, E. Mortaz, H.R. Jamaati et al. // Iran J. Allergy Asthma Immunol. 2015 Aug; 14(4): 346-60. PMID: 26547702.
50. Marischen L. Human gammadelta T cells produce the protease inhibitor and antimicrobial peptide elafin / L. Marischen, D. Wesch, J.M. Schröder et al. // Scand. J. Immunol. 2009 Dec; 70(6): 547-52. doi: 10.1111/j.1365-3083.2009.02337.x.
51. Mathews J.A. γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-I uced Pulmonary Inflammation in Mice / J.A. Mathews, D.I. Kasahara, L. Ribeiro et al. // PLoS One. 2015 Jul 2; 10(7): e0131236. doi: 10.1371/journal.pone.0131236.
52. McAleer J.P., Kolls J.K. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense // Immunol. Rev. 2014 Jul; 260(1): 129-44. doi: 10.1111/imr.12183.
53. Meierovics A., Yankelevich W.J., Cowley S.C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection // Proc. Natl. Acad. Sci. USA. 2013 Aug 13; 110(33): E3119-28. doi: 10.1073/pnas.1302799110.
54. Meierovics A.I., Cowley S.C. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection // J. Exp. Med. 2016 Nov 14; 213(12): 2793-2809.
55. Melo-Gonzalez F., Hepworth M.R. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells // Immunology. 2017 Mar; 150(3): 265-275. doi: 10.1111/imm.12697.
56. Mjösberg J., Spits H. Human innate lymphoid cells // J. Allergy Clin. Immunol. 2016 Nov; 138(5): 1265-1276. doi: 10.1016/j.jaci.2016.09.009.
57. Nada M.H. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation / M.H. Nada, H. Wang, G. Workalemahu, Y. Tanaka, C.T. Morita // J. Immunother. Cancer. 2017 Feb 21; 5: 9. doi: 10.1186/s40425-017-0209-6.
58. Nakasone C. Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection / C. Nakasone, N. Yamamoto, M. Nakamatsu et al. // Microbes. Infect. 2007 Mar; 9(3): 251-8. doi: 10.1016/j.micinf.2006.11.015.
59. Parkinson R.M. Egr3 induces a Th17 response by promo–ting the development of γδ T cells / R.M. Parkinson, S.L. Collins, M.R. Horton, J.D. Powell // PLoS One. 2014 Jan 24; 9(1): e87265. doi: 10.1371/journal.pone.0087265.
60. Paul S. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance // S. Paul, A.K. Singh, Shilpi, G. Lal // Int. Rev. Immunol. 2014 Nov-Dec; 33(6): 537-58. doi: 10.3109/08830185.2013.863306.
61. Rahimpour A. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells –using MR1 tetramers / A. Rahimpour, H.F. Koay, A. Enders et al. // J. Exp. Med. 2015 Jun 29; 212(7): 1095-108. doi: 10.1084/jem.20142110.
62. Rampuria P., Lang M.L. CD1d-dependent expansion of NKT follicular helper cells in vivo and in vitro is a product of cellular proli–feration and differentiation // Int. Immunol. 2015 May; 27(5): 253-63. doi: 10.1093/intimm/dxv007.
63. Robinette M.L., Colonna M. Immune modules shared by innate lymphoid cells and T cells // J. Allergy Clin. Immunol. 2016 Nov; 138(5): 1243-1251. doi: 10.1016/j.jaci.2016.09.006.
64. Rossjohn J. Recognition of CD1d-restricted antigens by natural killer T cells / J. Rossjohn, D.G. Pellicci, O. Patel et al. // Nat. Rev. Immunol. 2012 Dec; 12(12): 845-57. doi: 10.1038/nri3328.
65. Salio M. Biology of CD1- and MR1-restricted T cells / M. Salio, J.D. Silk, E.Y. Jones, V. Cerundolo // Annu Rev. Immunol. 2014; 32: 323-66. doi: 10.1146/annurev-immunol-032713-120243.
66. Scanlon S.T. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation / S.T. Scanlon, S.Y. Thomas, C.M. Ferreira et al. // J. Exp. Med. 2011 Sep 26; 208(10): 2113-24. doi: 10.1084/jem.20110522.
67. Seyda M. T Cells Going Innate / M. Seyda, A. Elkhal, M. Quante et al. // Trends Immunol. 2016 Aug; 37(8): 546-56. doi: 10.1016/j.it.2016.06.004.
68. Silver J.S. Erratum: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs / Silver J.S., Kearley J., Copenhaver A.M. et al. // Nat. Immunol. 2016 Jul 19; 17(8): 1005. doi: 10.1038/ni0816-1005c.
69. Silver J.S. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs / J.S. Silver, J. Kearley, A.M. Copenhaver et al. // Nat. Immunol. 2016 Jun; 17(6): 626-35. doi: 10.1038/ni.3443.
70. Small C.L. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung / C.L. Small, S. McCormick, N. Gill et al. // J. Immunol. 2008 Apr 15; 180(8): 5558-68. doi: 10.4049/jimmunol.180.8.5558.
71. Svedova J. TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation / J. Svedova, N. Tsurutani, W. Liu et al. // J. Immunol. 2016 Jun 1; 196(11): 4510-21. doi: 10.4049/jimmunol.1600113.
72. Tebartz C. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection / C. Tebartz, S.A. Horst, T. Sparwasser et al. // J. Immunol. 2015 Feb 1; 194(3): 1100-11. doi: 10.4049/jimmunol.1400196.
73. Turchinovich G., Hayday A.C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells // Immunity. 2011 Jul 22; 35(1): 59-68. doi: 10.1016/j.immuni.2011.04.018.
74. Two Types of Interleukin 17A-Producing γδ T Cells in Protection Against Pulmonary Infection With Klebsiella pneumoniae / Murakami T., Hatano S., Yamada H. et al. // J. Infect. Dis. 2016 Dec 1; 214(11): 1752-1761. doi: 10.1093/infdis/jiw443.
75. Uldrich A.P. CD1d-lipid antigen recognition by the γδ TCR / A.P. Uldrich, J. Le Nours, D.G. Pellicci et al. // Nat. Immunol. 2013 Nov; 14(11): 1137-45. doi: 10.1038/ni.2713.
76. Van Maele L. Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection / L. Van Maele, C. Carnoy, D. Cayet et al. // J. Infect. Dis. 2014 Aug 1; 210(3): 493-503. doi: 10.1093/infdis/jiu106.
77. Vavassori S. Butyrophilin 3A1 bings phosphorylated antigens and stimulates human γδ T cells // Vavassori S., Kumar A., Wan G.S. et al. // Nat. Immunol. 2013 Sep; 14(9): 908-16. doi: 10.1038/ni.2665.
78. Von Köckritz-Blickwede M. Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model / M. von Köckritz-Blickwede, M. Rohde, S. Oehmcke et al. // Am. J. Pathol. 2008 Dec; 173(6): 1657-68. doi: 10.2353/ajpath.2008.080337.
79. Wands J.M. Distribution and leukocyte contacts of gamma–delta T cells in the lung // J.M. Wands, C.L. Roark, M.K. Aydintug et al. // J. Leukoc. Biol. 2005 Nov; 78(5): 1086-96. doi: 10.1189/jlb.0505244.
80. Wang H., Morita C.T. Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of human Vγ2Vδ2 T Cells / J. Immunol. 2015 Nov 15; 195(10): 4583-94. doi: 10.4049/jimmunol.1500314. 
81. Wingender G., Sag D., Kronenberg M. NKT10 cells: a novel iNKT cell subset // Oncotarget. 2015 Sep 29; 6(29): 26552-3. doi: 10.18632/oncotarget.5270.
82. Wong E.B., Ndung’u T., Kasprowicz V.O. The role of mucosal-associated invariant T cells in infectious diseases // Immunology. 2017 Jan; 150(1): 45-54. doi: 10.1111/imm.12673.
83. Zhao H. Exposure to particular matter increases susceptibility to respiratory Staphylococcus aureus infection in rats via reducing pulmonary natural killer cells / H. Zhao, W. Li, Y. Gao et al. // Toxico–logy. 2014 Nov 5; 325: 180-8. doi: 10.1016/j.tox.2014.09.006.
84. Ziegler C. The dynamics of T cells during persistent Staphylococcus aureus infection: from antigen-reactivity to in vivo anergy / C. Ziegler, O. Goldmann, E. Hobeika et al. // EMBO Mol. Med. 2011 Nov; 3(11): 652-66. doi: 10.1002/emmm.201100173.

Similar articles

Development of the immune response in pneumonia induced by Staphylococcus aureus  (part 3)
Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Child`s Health" Том 12, №4, 2017
Date: 2017.08.03
Categories: Pediatrics/Neonatology
Sections: Specialist manual
Development of the immune response in pneumonia due  to Staphylococcus aureus (part 8)
Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Child`s Health" Том 13, №1, 2018
Date: 2018.04.12
Categories: Pediatrics/Neonatology
Sections: Specialist manual
Development of the immune response in pneumonia due to Staphylococcus aureus (part 6)
Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Child`s Health" Том 12, №7, 2017
Date: 2017.12.22
Categories: Pediatrics/Neonatology
Sections: Specialist manual
Development of the immune response in pneumonia due to Staphylococcus aureus (part 5)
Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Child`s Health" Том 12, №6, 2017
Date: 2017.11.15
Categories: Pediatrics/Neonatology
Sections: Specialist manual

Back to issue