Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

"Тrauma" Том 19, №1, 2018

Back to issue

Biomechanical analysis of conditions of the functioning of knee endoprosthesis in valgus deformities in patients with rheumatoid arthritis

Authors: Лазарев І.А., Бабко А.М., Автомєєнко Є.М., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

Categories: Traumatology and orthopedics

Sections: Clinical researches

print version


Summary

Актуальність. Ураження колінного суглоба (КС) при ревматоїдному артриті (РА) супроводжується формуванням контрактур і розвитком дискордантних деформацій нижніх кінцівок, що, зі свого боку, призводять до часткової або повної втрати функції кінцівки. Аналіз даних вітчизняної та зарубіжної літератури свідчить про те, що питанню пато- і механогенезу фронтальних деформацій колінних суглобів у хворих на РА приділяється недостатня увага, умови функціонування ендопротеза КС з наявністю вальгусних та варусних деформацій кінцівки у хворих на РА мало вивчені. Мета роботи: вивчити можливості функціонування ендопротеза КС при компенсації дефектів виростків великогомілкової кістки за допомогою кісткових трансплантатів чи металевих аугментів при різних величинах вальгусної деформації у хворих на РА; вивчити поведінку та стабільність біомеханічної моделі «кістка — ендопротез» при компенсації дефекту зовнішнього виростка великогомілкової кістки кістковим автотрансплантатом чи металевим аугментом 5, 10 та 15 мм. Матеріали та методи. На основі КТ-сканів створені імітаційні комп’ютерні моделі КС, що налічували елементи з різними механічними властивостями — стегнова кістка, феморальний компонент ендопротеза, поліетиленова вставка, тибіальний компонент ендопротеза та великогомілкова кістка. За допомогою програмного пакета SolidWorks побудовано імітаційні моделі КС за умов його вальгусної деформації за наявності трансплантата виростка великогомілкової кістки 5, 10 та 15 мм із кісткової тканини та металу (аугмент). Подальші розрахунки напружено-деформованого стану моделі здійснювали методом скінченних елементів у програмному пакеті ANSYS (чисельний метод). Результати. Під дією навантаження наявність кісткового трансплантата 5, 10 та 15 мм призводила до збільшення на близько 20 % значень напружень на стегновій кістці з локалізацією по контуру контакту з феморальним компонентом ендопротеза. На тибіальному компоненті ендопротеза показники напружень зросли на 77 % за наявності кісткового трансплантата 5 мм та поступово зменшувались до 66 % при збільшенні його розміру до 15 мм. Наявність кісткового трансплантата 5, 10 та 15 мм призводила до збільшення значень напружень на великогомілковій кістці майже у 2 рази з локалізацією в метадіафізарній зоні кортикальної кістки. Основне збільшення показників напружень відбувалося на плато великогомілкової кістки з локалізацією по контуру тибіального компонента ендопротеза, де наявність кісткового трансплантата призводила до збільшення значень від 65 % при його розмірах 5 мм майже в 3 рази — до 15 мм. Під дією навантаження наявність металевого аугмента для заміщення дефекту латерального виростка великогомілкової кістки розміром 5 та 10 мм призводила до зростання значень напружень на стегновій кістці на 20 % із наступним їх зниженням до 5 % при розмірі 15 мм. За наявності металевого аугмента 5, 10 та 15 мм значення напружень зменшувались на феморальному компоненті ендопротеза на 37–40 %. Наявність металевого аугмента 5, 10 та 15 мм обумовила значне підвищення показників напружень на тибіальному компоненті ендопротеза — у 9, 10 та 12 разів відповідно. Наявність металевого аугмента 5 та 10 мм призводила до збільшення значень напружень на великогомілковій кістці на 95–97 %, а при збільшенні розміру трансплантата до 15 мм — на 69 %. Наявність металевого аугмента 5 мм та збільшення його розміру до 10 та 15 мм призводили до підвищення показників напружень на плато великогомілкової кістки на 38, 10 та 8 % відповідно. Висновки. Збльшення показників напружень на ділянці плато великогомілкової кістки з перевищенням гранично допустимих значень при застосуванні кісткового трансплантата розміром 10 та 15 мм є фактором розвитку явищ нестабільності тибіального компонента ендопротеза. Для заміщення дефекту зовнішнього виростка великогомілкової кістки до 6,1 мм доцільно застосування кісткового трансплантата. Дефекти більшого розміру потребують застосування металевого аугмента.

Актуальность. Поражение коленного сустава (КС) при ревматоидном артрите (РА) сопровождается формированием контрактур и развитием дискордартных деформаций нижних конечностей, которые, в свою очередь, приводят к частичной или полной потере функции конечности. Анализ данных отечественной и зарубежной литературы свидетельствует о том, что вопросу пато- и механогенеза фронтальных деформаций коленных суставов у пациентов с РА уделяется недостаточное внимание, условия функционирования эндопротеза КС с наличием вальгусной и варусной деформаций конечности у больных РА мало изучены. Цель работы: изучить возможности функционирования эндопротеза КС при компенсации дефектов мыщелков большеберцовой кости с помощью костных трансплантатов или металлических аугментов при различных величинах вальгусной деформации у больных РА; изучить поведение и стабильность биомеханической модели «кость — эндопротез» при компенсации дефекта наружного мыщелка большеберцовой кости костным автотрансплантатом или металлическим аугментом 5, 10 и 15 мм. Материалы и методы. На основе КТ-сканов созданы имитационные компьютерные модели КС, которые насчитывали элементы с различными механическими свойствами — бедренная кость, феморальный компонент эндопротеза, поли-
этиленовая вставка, тибиальный компонент эндопротеза и большеберцовая кость. С помощью программного пакета SolidWorks созданы имитационные модели КС в условиях его вальгусной деформации с наличием трансплантата мыщелка большеберцовой кости 5, 10 и 15 мм из костной ткани и металла (аугмент). Дальнейшие расчеты напряженно-деформированного состояния модели осуществляли методом конечных элементов в программном пакете ANSYS (численный метод). Результаты. Под действием нагрузки наличие костного трансплантата 5, 10 и 15 мм приводило к увеличению приблизительно на 20 % значений напряжений на бедренной кости с локализацией по контуру контакта с феморальным компонентом эндопротеза. На тибиальном компоненте эндопротеза показатели напряжений выросли на 77 % при наличии костного трансплантата 5 мм и постепенно уменьшались до 66 % при увеличении его размера до 15 мм. Наличие костного трансплантата 5, 10 и 15 мм приводило к увеличению значений напряжений на большеберцовой кости почти в 2 раза с локализацией в метадиафизарной зоне. Основное увеличение показателей напряжений происходило на плато большеберцовой кости с локализацией по контуру тибиального компонента эндопротеза, где наличие костного трансплантата приводило к увеличению значений от 65 % при размерах 5 мм до почти в 3 раза — при 15 мм. Под действием нагрузки наличие металлического аугмента для замещения дефекта латерального мыщелка большеберцовой кости размером 5 и 10 мм приводило к увеличению значений напряжений на бедренной кости на 20 % с последующим их снижением до 5 % при размере 15 мм. При наличии металлического аугмента 5, 10 и 15 мм значение напряжений уменьшалось на феморальном компоненте эндопротеза на 37–40 %. Наличие металлического аугмента 5, 10 и 15 мм обусловило значительное повышение показателей напряжений на тибиальном компоненте эндопротеза — в 9, 10 и 12 раз соответственно. Наличие металлического аугмента 5 и 10 мм приводило к увеличению значений напряжений на большеберцовой кости на 95–97 %, а при увеличении размера трансплантата до 15 мм — на 69 %. Наличие металлического аугмента 5 мм и увеличение его размера до 10 и 15 мм приводили к повышению показателей напряжений на плато большеберцовой кости на 38, 10 и 8 % соответственно. Выводы. Увеличение показателей напряжений на плато большеберцовой кости с превышением предельно допустимых значений при применении костного трансплантата размером 10 и 15 мм является фактором развития явлений нестабильности тибиального компонента эндопротеза. Для замещения дефекта наружного мыщелка большеберцовой кости до 6,1 мм целесообразно применение костного трансплантата. Дефекты большего размера требуют применения металлического аугмента.

Background. The defeat of the knee joint in rheumatoid arthritis (RA) is accompanied by the formation of contractures and the development of discordant deformities of the lower limbs, which, in turn, lead to a partial or complete loss of limb function. Analysis of the data of domestic and foreign literature suggests that the issue of pathogenesis and mechanogenesis of frontal deformities of the knee joints in patients with RA is not paid enough attention, conditions for the functioning of the knee endoprosthesis in the presence of valgus and varus deformities of the limb in RA patients have been poorly studied. The purpose was to study the possibilities of functioning of the knee endoprosthesis with compensation of the tibial condyle defects by bone grafts or metallic augments in patients with rheumatoid arthritis and lower limbs valgus deformity, to study the function and stability of “bone — endoprosthesis” biomechanical model when compensating external tibia defect by bone graft or metal augmentation of 5, 10 and 15 mm. Materials and methods. On the basis of CT scans, 3D models of the knee were created. Using SolidWorks software package, simulation models of the knee in the conditions of its valgus deformation with the presence of 5, 10 and 15 mm bone graft and metal (augment) consisted of elements with different mechanical properties — the femur, femoral component of the endoprosthesis, polyethylene insert, tibial component of the endoprosthesis and the tibia have been created. Further calculations of the model’s stress-strain state were carried out by the finite element method in the ANSYS software package. Results. Under the load, the presence of 5–10–15 mm bone graft resulted in an increase of about 20 % in the stress on the femoral bone, with the localization at the contour of contact with the femoral component of endoprosthesis. At the tibial component of the endoprosthesis, stress values increased by 77 % in the presence of 5 mm bone graft, but gradually decreased to 66 % with an increase of its size to 15 mm. At the tibia, the presence of 5–10–15 mm bone graft resulted in almost 2-fold increase in stress values, with localization in the meta-adjacent zone of cortical bone. The main increase in the stress occurred at the tibial plateau, with the localization at the contour of contact with the tibial component of endoprosthesis, where the presence of the bone graft resulted in stress increase from 65 %, if its size was 5 mm, to up to 3-fold increase with size of 15 mm. Under the load, the presence of 5 and 10 mm metal augment to replace the lateral tibial defect resulted in an increase by 20 % in the stresses on the femur, followed by a decrease of up to 5 %, if augment size was 15 mm. At the femoral component of the endoprosthesis, in the presence of a 5–10–15 mm metal augment, the values of stress decreased by 37–40 %.
The presence of 5, 10 and 15 mm metal augment at the tibial component of the endoprosthesis resulted in a significant increase in stress indices — by 9, 10 and 12 times, respectively. At the tibia, the presence of 5 and 10 mm metal augment resulted in an increase in stress values by 95–97 %, and with 15 mm graft — by 69 %. The presence of 5 mm metal augment and increase in its size up to 10 and 15 mm resulted in corresponding increase in stresses by 38, 10 and 8 % at the tibial plateau. Conclusions. The growth of stress at the tibial plateau with exceeding of the maximum permissible values, when using bone grafts of 10 and 15 mm, is a factor for the development of the tibial component instability. To replace the defect of the external condyle of the tibia up to 6.1 mm, it is advisable to use bone graft. Larger size defects require using a metal augment.


Keywords

ревматоїдний артрит; колінний суглоб; вальгусна деформація; скінченно-елементне моделювання; напружено-деформований стан

ревматоидный артрит; коленный сустав; вальгусная деформация; конечно-элементное моделирование; напряженно-деформированное состояние

rheumatoid arthritis; knee joint; valgus deformity; finite element modeling; stress-strain state


For the full article you need to subscribe to the magazine.


Bibliography

1. Ганджа І.М., Коваленко В.М., Лисенко Г.І., Свінціцький А.С. Ревматологія: Підручник. — 2011. — 43 с.
2. Герасименко С.І. Ортопедичне лікування ревматоїдного артриту при ураженнях нижніх кінцівок. — Київ: Преса України, 2000. — 159 с.
3. Accuracy of image-free computer navigated total knee arthroplasty is not compromised in severely deformed varus knees / Maniwa K., Ishibashi Y., Tsuda E. et al. // J. Arthroplasty. — 2013. — Vol. 28(5). — P. 802-806. 
4. Annual trends in knee and hip arthroplasty in rheumatoid arthritis 1998–2007 / Manrique Arija S., López Lasanta M., Jiménez Núñez F.G. et al. // Reumatol. Clin. — 2011. — Vol. 7(6). — P. 380-384. 
5. Эндопротезирование крупных суставов нижних конечностей, при их одновременном поражении, у больных ревматоидным артритом / С.И. Герасименко, М.В. Полулях, А.С. Герасименко / Материалы IV Евразийского конгресса травматологов-ортопедов (Бишкек, 27–30 авг. 2014 г.) // Центр.-Азиат. журн. серд.-сосуд. хирургии. Спецвып. — 2014. — № 12. — С. 199-200.
6. Особливості ендопротезування колінних суглобів при нестабільності в сагітальній площині / Зазірний І.М., Євсєєнко В.Г. // Збірник наукових праць ХV з’їзду ортопедів-травматологів України. — Дніпропетровськ: Ліра, 2010. — С. 169. 
7. Зміни динамічних характеристик у суглобах нижньої кінцівки до та після ендопротезування колінного суглоба у хворих на ревматоїдний артрит / Герасименко С.І., Полулях М.В., Рой І.В. та ін. // Травма. — 2015. — Т. 16, № 5. — С. 53-58.
8. Опыт 500 тотальных эндопротезирований коленного сустава / Чрагян Г.А., Загородний П.В., Нуждин В.И. и др. // Вестник травматол. и ортопедии им. Н.Н. Приорова. — 2012. — № 2. — С. 40-47.
9. Особливості формування контрактур та деформацій великих суглобів нижніх кінцівок у хворих на ревматоїдний артрит / Герасименко С.І., Полулях М.В., Бабко А.М. та ін. // Актуальні питання сучасної ортопедії та травматології: Мат-ли ІІ Укр. наук. симпоз. з біомеханіки. — Дніпропетровськ, 2015. — С. 111-112.
10. Clinical comparison of valgus and varus deformities in primary total knee arthroplasty following midvastus approach / Chou P.H., Chen W.M., Chen C.F. et al. // J. Arthroplasty. — 2012. — Vol. 27(4). — P. 604-612. 
11. Complex Primary Total Knee Arthroplasty: Long-Term Outcomes / Martin J.R., Beahrs T.R., Stuhlman C.R., Trousdale R.T. // J. Bone Joint Surg Am. — 2016. — Vol. 98(17). — P. 1459-1470. 
12. Effects of Reduction Osteotomy on Gap Balancing During Total Knee Arthroplasty for Severe Varus Deformity / Niki Y., Harato K., Nagai K. et al. // J. Arthroplasty. — 2015. — Vol. 30(12). — P. 2116-2120. 
13. Fewer and older patients with rheumatoid arthritis need total knee replacement / Skyttä E.T., Honkanen P.B., Eskelinen A. et al. // Scand. J. Rheumatol. — 2012. — Vol. 41(5). — P. 345-349. 
14. Біомеханічний аналіз умов функціонування ендопротеза колінного суглоба при варусних деформаціях кінцівки у хворих на ревматоїдний артрит / І.А. Лазарев, Є.М. Автомєєнко, А.М. Бабко та ін. // Травма. — 2017. — Т. 18, № 6.
15. Maganaris C.N. Paul J.P. In vivo human tendon mechanical properties // Journal of Physiology. — 1999. — 521. — 1. — Р. 307-313.
16. Kubichek М., Florian Z. Stress strain analysis of Knee joint // Engineering Mechanics. — 2009. — 5(16). — Р. 315-322. 
17. http://www.camelotplast.ru/info/polietilen-visokogo-dav-leniya.php
18. Сompressive strength of tibial cancellous bone // Hvid I., Christensen P., Andergaard J., Christensen P.B., Larsen C.G. // Acta Оrthop. Scand. — 1983. — 54. — Р. 819-825.

Similar articles

Biomechanical analysis of conditions of the functioning of knee endoprosthesis  in varus deformities in patients with rheumatoid arthritis
Authors: Лазарев І.А., Автомєєнко Є.М., Бабко А.М., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України» м. Київ, Україна

"Тrauma" Том 18, №6, 2017
Date: 2018.02.12
Categories: Traumatology and orthopedics
Sections: Clinical researches
Імітаційно-комп’ютерне моделювання та обґрунтування диференційованого підходу до остеосинтезу при переломах латерального виростка великогомілкової кістки
Authors: Мельник І.В. - Київська міська клінічна лікарня № 12; Лазарєв І.А., Бруско А.Т. - ДУ «Інститут травматології та ортопедії НАМН України», м. Київ; Самохін А.В. - Київська міська клінічна лікарня № 12
"Pain. Joints. Spine." 3 (15) 2014
Date: 2014.12.15
Categories: Rheumatology, Traumatology and orthopedics
Sections: Clinical researches
Biomechanical definition  of the elbow stability at the radial head fractures combined  with collateral ligament injury
Authors: Лазарев І.А., Курінний І.М., Страфун О.С., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

"Тrauma" Том 18, №5, 2017
Date: 2017.11.21
Categories: Traumatology and orthopedics
Sections: Clinical researches
Biomechanical definition of the load on the elbow joint in radial head fractures
Authors: Лазарев І.А., Курінний І.М., Страфун О.С., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

"Тrauma" Том 18, №2, 2017
Date: 2017.05.25
Categories: Traumatology and orthopedics
Sections: Clinical researches

Back to issue