Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

 

Журнал «Травма» Том 19, №5, 2018

Вернуться к номеру

Біомеханічний розрахунок навантаження на структури ліктьового суглоба при його одномоментній мануальній редресації

Авторы: Лазарев І.А., Страфун О.С., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

Рубрики: Травматология и ортопедия

Разделы: Справочник специалиста

Версия для печати


Резюме

Критичні навантаження на структури ліктьового суглоба (ЛС) під час одномоментної мануальної редресації згинально-розгинальної контрактури обумовлюють актуальність досліджень у цьому напрямку з метою запобігання розвитку ускладнень та виникнення рецидиву контрактур. Для розрахунків напружено-деформованого стану структур ліктьового суглоба застосовували аналітичний метод (АМ) і метод скінченних елементів (МСЕ). Застосовували модифіковану комп’ютерну 3D-модель компанії Zygote Media Group, Inc. Розрахунки робили в умовах додаткового навантаження на ліктьовий суглоб зовнішньою силою 40 Н, необхідною для здійснення пасивного руху у напрямку розгинання у діапазоні від 30º до 20º до моменту блокування руху патологічно зміненою капсулою та для здійснення пасивного руху у напрямку згинання у діапазоні від 98º до 110º до моменту блокування руху патологічно зміненою капсулою. АМ: отримано максимальні значення напружень на суглобовій поверхні ліктьової кістки при згинанні — 4,09 МРа, при розгинанні — 5,1 МРа. МСЕ: при пасивному розгинанні максимальні показники напружень цілої моделі — σmax = 16,03 МРа, локалізовані позасуглобово у проксимальному відділі плечової кістки. Максимальні значення деформацій — εmax = 0,08 мм, локалізовані інтраартикулярно на хрящі суглобової поверхні ліктьової кістки. При пасивному згинанні максимальні показники напружень цілої моделі — σmax = 16 МРа, локалізовані позасуглобово у проксимальному відділі плечової кістки. Максимальні значення деформацій — εmax = 0,19 мм, локалізовані інтраартикулярно на хрящі суглобової поверхні ліктьової кістки. Виявлено високу збіжність в показниках розрахунків МСЕ та результатів АМ, що може свідчити про їх достатню точність. Спроба здолання обмеження рухів у ЛС при пасивному русі спричиняє зростання значень напружень, які можуть перевищувати границю міцності тканин у цій ділянці, особливо у хворих на регіонарний чи системний остеопороз. Збільшення прикладеного зусилля при спробі здолання обмеження рухів у ЛС під загальним знеболюванням дозволяє одномоментно усунути згинально-розгинальну контрактуру ЛС, але й збільшує навантаження на суглобові поверхні, зв’язковий апарат і патологічно змінену капсулу з можливим їх подальшим пошкодженням, прогресуванням контрактури та розвитком явищ остеоартрозу. Плечова кістка під час маніпуляції також приймає на себе значні навантаження на згинання, що може призводити до виникнення залишкових напружень на ній з появою дистрофічних розладів. Для запобігання виникненню додаткового пошкодження структур ліктьового суглоба оптимально процедуру редресації проводити під дією мінімальних навантажень, але збільшити їх час. Доцільно застосовувати систему дозованої статичної рухової реабілітації, яка дозволяє уникати перевантажень. При тяжких застарілих контрактурах із залученням в рубцевий процес великого обсягу сполучнотканинних структур (сухожилків, м’язів, бокових зв’язок і капсули суглоба) не слід вдаватися до одномоментної насильницької редресації на операційному столі, а розпочати лікування з хірургічної мобілізації.

Критические нагрузки на структуры локтевого сустава (ЛС) при одномоментной мануальной редрессации сгибательно-разгибательных контрактур обусловливают актуальность исследований в этом направлении с целью предотвращения развития осложнений и рецидива контрактур. Для расчетов напряженно-деформированного состояния структур локтевого сустава применяли аналитический метод (АМ) и метод конечных элементов (МКЭ). Применяли модифицированную компьютерную 3D-модель компании Zygote Media Group, Inc. Расчеты делали в условиях дополнительной нагрузки на локтевой сустав внешней силой 40 Н, необходимой для осуществления пассивного движения в направлении разгибания в диапазоне от 30º до 20º до момента блокирования движения патологически измененной капсулой и для осуществления пассивного движения в направлении сгибания в диапазоне от 98º до 110º до момента блокирования движения патологически измененной капсулой. АМ: получены максимальные значения напряжений на суставной поверхности локтевой кости при сгибании — 4,09 МРа, при разгибании — 5,1 МРа. МКЭ: при пассивном разгибании максимальные показатели напряжений целой модели — σmax = 16,03 МРа, локализованы экстраартикулярно в проксимальном отделе плечевой кости. Максимальные значения деформаций — εmax = 0,08 мм, локализованы интраартикулярно на хряще суставной поверхности локтевой кости. При пассивном сгибании максимальные показатели напряжений целой модели — σmax = 16 МРа, локализованы экстраартикулярно в проксимальном отделе плечевой кости. Максимальные значения деформаций — εmax = 0,19 мм, локализованы интраартикулярно на хряще суставной поверхности локтевой кости. Выявлено высокое сходство в показателях расчетов МКЭ и результатов АМ, что свидетельствует об их достаточной точности. Попытка преодоления ограничения движений в ЛС при пассивном движении приводит к росту значений напряжений, которые могут превышать предел прочности тканей в этой зоне, особенно у больных регионарным или системным остеопорозом. Увеличение прилагаемого усилия при попытке преодоления ограничения движений в ЛС под общим обезболиванием позволяет одномоментно устранить сгибательно-разгибательную контрактуру ЛС, еще и увеличивает нагрузку на суставные поверхности, связочный аппарат и патологически измененную капсулу с возможным их последующим повреждением, прогрессированием контрактуры и развитием явлений остеоартроза. Плечевая кость во время манипуляции также воспринимает на себя значительные нагрузки на изгиб, что может приводить к возникновению остаточных напряжений на ней с развитием дистрофических расстройств. Для предотвращения возникновения дополнительного повреждения структур локтевого сустава оптимально процедуру редрессации проводить под действием минимальных нагрузок, но увеличить их время. Целесообразно применять систему дозированной статической двигательной реабилитации, которая позволяет избегать перегрузок. При тяжелых застарелых конт-рактурах с вовлечением в рубцовый процесс большого объема соединительно-тканных структур (сухожилий, мышц, боковых связок и капсулы сустава) не следует прибегать к одномоментной насильственной редрессации на операционном столе, а начать лечение с хирургической мобилизации.

Critical loads on the elbow structures during simultaneous manual mobilization of flexion-extension joint contracture cause the urgency of research in this direction, in order to prevent the development of complications and the recurrence of joint restriction. To calculate the stress-strain state of the elbow structures, the analytical method (AM) and the finite element method (FEM) were used. A modified 3D computer model of Zygote Media Group, Inc. was used. The calculations were made under conditions of an additional load on the elbow by 40 N of external force, which is necessary for the implementation of passive motion in the extension direction in the range of 30 to 20º until the blocking by the pathologically altered capsule and for passive motion in the flexion direction in the range of 98 to 110º until the blocking by pathologically altered capsule. The maximum stress at the articular surface of the ulna in flexion — 4.09 MPa, in extension — 5.1 MPa were obtained by AM. By FEM, results were obtained as follows. With passive extension, the maximum stress parameters of the whole model — σmax = 16.03 MPa are localized extraarticularly in the proximal humerus. The maximum strain — εmax = 0.08 mm are localized intraarticularly at the cartilage of the articular surface of the ulna. With passive flexion, the maximum stress of the whole model — σmax = 16 MPa is localized extraarticularly in the proximal humerus. The maximum strain deformities — εmax = 0.19 mm are localized intraarticularly at the cartilage of the articular surface of the ulna. A high similarity in the indices of FEM calculations and AM results was revealed, which indicates their sufficient accuracy. An attempt to overcome the motion limitation of the elbow by passive movement in it leads to an increase in the stress level that can exceed the tensile strength of tissues in that area, especially in patients with regional or systemic osteoporosis. Increased applied force at the time of the attempt to overcome the motion limitation in the elbow under general anesthesia can simultaneously eliminate the flexion-extension elbow restriction, but also increases the load on the articular surfaces, the ligament apparatus and the pathologically altered capsule, with possible subsequent damage, contracture progressing and the development of osteoarthrosis. At the time of manipulation, the humerus also has a significant bending load, which can lead to the residual stress distribution with the development of dystrophic disorders. To prevent the additional damage to the elbow structures, it is optimal to carry out the manual joint mobilization procedure under minimal loads, but to increase their time. A system of dosed static motor rehabilitation is recommended, which helps to avoid overloading. In severe chronic contractures involving a large part of connective tissue structures in the scar process (tendons, muscles, ligaments and joint capsule), it is necessary to avoid one-stage manual joint mobilization at the operating table and to start the treatment with surgical mobilization.


Ключевые слова

ліктьовий суглоб; згинально-розгинальна контрактура; редресація; напружено-деформований стан

локтевой сустав; сгибательно-разгибательная контрактура; редрессация; напряженно-деформированное состояние

elbow joint; flexion-extension contracture; one-stage manual joint mobilization; stress-strain state


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Бабовников А.В. Диагностика и лечение переломов костей, образующих локтевой сустав: Автореф. дис… д-ра мед. наук. — М., 2008. — С. 4-27.
2. Калантырская В.А., Ключевский В.В. Лечение вне- и внутрисуставных повреждений локтевого сустава // Мир науки, культуры, образования. — 2014. — № 2(45). — С. 337-343.
3. Карпинский М.Ю. Результаты моделирования повреждений связочного аппарата коленного сустава / Карпинский М.Ю., Карпинская Е.Д., Щикота Р.А., Тяжелов А.А., Гончарова Л.Д. // Травма. — 2012. — Т. 13, № 3. — С. 165-171.
4. Лазарев І.А., Страфун О.С., Крищук М.Г., Скибан М.В., Максимішин О.М. Математичне визначення механічних властивостей капсули ліктьового суглоба при його згинально-розгинальній контрактурі // Вісник ортопедії, травматології та протезування. — 2018. — № 1(96). — C. 26-34. 
5. Макаров В.Б., Левадный Е.В., Страфун А.С. Математическое моделирование контактных напряжений и объема движений в локтевом суставе при переломе блока плечевой кости со смещением // Травма. — 2015. — Т. 16, № 2. — С. 12-19.
6. Huiskes R., Chao E.Y.S. A survey of finite element analysis in orthopaedic biomechanics: the first decade // J. Biomech. — 1983. — № 16. — P. 385-409.
7. Kubıcek M., Florian Z. Stress strain analysis of knee joint // Engineering Mechanics. — 2009. — Vol. 16, № 5. — Р. 315-322. 
8. Morrey B.F., Tanaka S. The posttraumatic stiff elbow // Clin. Orthop. Rel. Res. — 2009. — № 431. — Р. 26.
9. Smith J., Morrey B.F., Sotelo J.S. Principles of Elbow Rehabilitation / Morrey B.F. // The Elbow and Its Disorders. — Philadelphia: PA 19103–2899, 2009 by The Mayo Clinic. — P. 140-170. 
10. Wilk K., Reinold M., Andews J. Rehabilitation of the throwers elbow // Clin. Sports M. — 2004. — № 23. — P. 197-204.

Похожие статьи

Біомеханічне визначення навантаження  на ліктьовий суглоб при переломах головки променевої кістки
Авторы: Лазарев І.А., Курінний І.М., Страфун О.С., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

Журнал «Травма» Том 18, №2, 2017
Дата: 2017.05.25
Рубрики: Травматология и ортопедия
Разделы: Клинические исследования
Біомеханічне визначення стабільності  ліктьового суглоба при переломах головки променевої кістки, комбінованих  із пошкодженням колатеральних зв’язок
Авторы: Лазарев І.А., Курінний І.М., Страфун О.С., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

Журнал «Травма» Том 18, №5, 2017
Дата: 2017.11.21
Рубрики: Травматология и ортопедия
Разделы: Клинические исследования
Аналіз змін напружено-деформованого стану в суглобовій губі лопатки в умовах різних типів її пошкодження
Авторы: Лазарев І.А., Страфун С.С., Ломко В.М., Скибан М.В.
ДУ «Інститут травматології та ортопедії НАМН України», м. Київ, Україна

Журнал «Травма» Том 18, №3, 2017
Дата: 2017.07.11
Рубрики: Травматология и ортопедия
Разделы: Клинические исследования

Вернуться к номеру