Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

"Pain. Joints. Spine." Том 9, №4, 2019

Back to issue

Modern view of osteoporosis attending neurological disorders (Literature review)

Authors: Бистрицька М.А.
ДУ «Інститут геронтології імені Д.Ф. Чеботарьова НАМН України», м. Київ, Україна

Categories: Rheumatology, Traumatology and orthopedics

Sections: Specialist manual

print version


Summary

У статті наведені сучасні дані літератури щодо вивчення впливу патології нервової системи на метаболізм кісткової тканини. Серед захворювань нервової системи доведено впливають на кісткову тканину й збільшують ризик розвитку остеопорозу й переломів епілепсія, розсіяний склероз, інсульт, травма хребта й спинного мозку, хвороба Паркінсона та м’язова дистрофія. Продовжується вивчення механізмів формування остеопорозу у цієї категорії хворих, з’являються нові погляди на причини підвищеного ризику переломів, а отже, й нові напрямки профілактики та лікування.

В статье представлены современные данные литературы по изучению влияния патологии нервной системы на метаболизм костной ткани. Среди заболеваний нервной системы доказано влияют на костную ткань и увеличивают риск развития остеопороза и переломов эпилепсия, рассеянный склероз, инсульт, травма позвоночника и спинного мозга, болезнь Паркинсона и мышечная дистрофия. Продолжается изучение механизмов формирования остеопороза у этой категории больных, появляются новые взгляды на причины повышенного риска переломов, а значит, и новые направления профилактики и лечения.

The article presents the current literature data of the nervous system’s pathology influence on bone metabolism. The nervous system diseases proven to affect bone and increase the risk of osteoporosis and fractures are epilepsy, multiple sclerosis, stroke, spinal cord injury, Parkinson’s disease and muscular dystrophy. Study of the mechanisms of osteoporosis formation in this category of patients is ongoing, the new views of the increased fracture risk causes appear, and therefore new trends in prevention and treatment are required.


Keywords

остеопороз; хвороба Паркінсона; інсульт; травма хребта й спинного мозку; розсіяний склероз; огляд

остеопороз; болезнь Паркинсона; инсульт; травма позвоночника и спинного мозга; рассеянный склероз; обзор

osteoporosis; Parkinson’s disease; stroke, spinal cord injury; multiple sclerosis; review


For the full article you need to subscribe to the magazine.


Bibliography

1. Поворознюк В.В., Григорьева Н.В. Менопауза и костно–мышечная система. К.: Експрес, 2004. 512 с.

2. Повреждение позвоночника и спинного мoзга. Под ред. Н.Е. Полищука, Н.А. Коржа, В.Я. Фищенко. К.: Книга плюс, 2001. 388 с.

3. Рекомендації щодо діагностики та лікування хвороби Паркінсона. За ред. І.М. Карабань. К.: ТОВ «Медичний журнал «Нейроньюс», 2017. 84 с.

4. Abou–Raya S., Helmii M., Abou–Raya A. Bone and mineral metabolism in older adults with Parkinson’s di–sease. Age and Ageing. Nov. 38(6). 675–80. doi: 10.1093/ageing/afp137.

5. Ahnstedt H., McCullough L.D., Cipolla M.J. The Importance of Considering Sex Differences in Translational Stroke Research. Transl. Stroke Res. 2016 Aug. 7(4). 261–273. doi: 10.1007/s12975–016–0450–1.

6. Al Anouti F., Taha Z., Shamim S., Khalaf K., Al Kaabi L., Alsafar H. An insight into the paradigms of osteoporosis, from genetics to biomechanics. Bone reports. 2019. 11. 100216. doi: 10.1016/j.bonr.2019.100216.

7. Akkawi I., Zmerly H. Osteoporosis, Current Concepts. Joints. 2018 Jun. 6(2). 122–127. doi: 10.1055/s–0038–1660790.

8. Allen N., Schwarzel A., Canning C. Recurrent falls in Parkinson’s disease: a systematic review. Parkinsons Dis. 2013. 2013. 906274. doi: 10.1155/2013/906274.

9. Altintaş A., Saruhan–Direskeneli G., Benbir G. et al. The role of osteopontin: a shared pathway in the pathogenesis of multiple sclerosis and osteoporosis? J. Neurol. Sci. 2009 Jan 15. 276(1–2). 41–44. doi: 10.1016/j.jns.2008.08.031.

10. Battaglino R., Lazzari A., Garshick E., Morse L. Spinal cord injury–induced osteoporosis: pathogenesis and emerging therapies. Curr. Osteoporos. Rep. 2012. 10(4). 278–285. doi: 10.1007/s11914–012–0117–0.

11. Bauman W., Cardozo C. Osteoporosis in individuals with spinal cord injury. PMR. 2015. 7(2). 188–201. doi: 10.1016/j.pmrj.2014.08.948.

12. Bauman W., Spungen A., Morrison N. et al. Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J. Rehabil. Res. 2005. 42(5). 625–634. doi: 10.1682/JRRD.2004.11.0145.

13. Beaupre G.S., Lew H.L. Bone–density changes after stroke. Am. J. Phys. Med. Rehabil. 2006 May. 85(5). 464–472. doi: 10.1097/01.phm.0000214275.69286.7a.

14. Bikle D. Integrins, insulin like growth factors, and the skeletal response to load. Osteoporos. Int. 2008. 19(9). 237–1246. doi: 10.1007/s00198–008–0597–z.

15. Boling E.P. Gender and osteoporosis: similarities and sex–specific differences. J. Gend. Specif. Med. 2001. 4(2). 36–43. PMID: 11480096.

16. Bonnet N., Pierroz D.D., Ferrari S.L. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J. Musculoskelet. Neuronal. Interact. 2008. 8(2). 94–104. PMID: 18622078.

17. Colangelo L., Biamonte F., Pepe J., Cipriani C., Minisola S. Understanding and managing secondary osteoporosis. Expert Rev. Endocrinol. Metab. 2019 Mar. 14(2). 111–122. doi: 10.1080/17446651.2019.1575727.

18. Carbone L., Chin A.S., Lee T.A. et al. The association of anticonvulsant use with fractures in spinal cord injury. Am. J. Phys. Med. Rehabil. 2013. 92(12). 1037–1046. doi: 10.1097/PHM.0000000000000014.

19. Carda S., Cisari C., Invernizzi M., Bevilacqua M. Osteoporosis after Stroke: A Review of the Causes and Potential Treatments Cerebrovasc Dis. 2009. 28. 191–200. doi: 10.1159/000226578.

20. Chang K., Hung C., Chen W. et al. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post–injury osteoporosis in spinal cord injury patients — a systematic review and meta–ana–lysis. PLoS One. 2013. 8(11). e81124. doi: 10.1371/journal.pone.0081124.

21. Charmetant C., Phaner V., Condemine A., Calmels P. Diagnosis and treatment of osteoporosis in spinal cord injury patients: a literature review. Ann. Phys. Rehabil. Med. 2010. 53. 655–668. doi: 10.1016/j.rehab.2010.10.001.

22. Daniel S.K., Lansang M.C., Okun M.S. Bone mineral density (BMD) in male patients with Parkinson’s disease. Int. J. Neurosci. 2012. 122(9). 523–527. doi: 10.3109/00207454.2012.685530.

23. De Vries F., Pouwels S., Bracke M. et al. Use of beta–2 agonists and risk of hip/femur fracture: a populationbased case–control study. Pharmacoepidemiol. Drug Saf. 2007. 16. 612–629. doi: 10.1002/pds.1318.

24. Dennison E.M., Premaor M., Flahive J. et al. Effect of comorbidities on fracture risk: findings from the glow study. Osteoporos. Int. 2011. 22. 529–530. doi: 10.1016/j.bone.2012.02.639.

25. Doherty A.L., Battaglino R.A., Donovan J. et al. Аdiponectin is a candidate biomarker of lower extre–mity bone density in men with chronic spinal cord injury. J. Bone Miner Res. 2014 Jan. 29(1). 251–259. doi: 10.1002/jbmr.2020.

26. Ducy P., Amling M., Takeda S. et al. Leptin inhi–bits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000. 100(2). 197–207. doi: 10.1016/s0092–8674(00)81558–5.

27. Eser P., Frotzler A., Zehnder Y. et al. Relationship between the duration of paralysis and bone structure: A pQCT study of spinal cord injured individuals. Bone. 2004. 34(5). 869–880. doi: 10.1016/j.bone.2004.01.001.

28. Faulkner M.A., Ryan–Haddad A.M., Lenz T.L., Degner K. Osteoporosis in long–term care residents with multiple sclerosis. Consult. Pharm. 2005 Feb. 20(2). 128–136.

29. Forster A., Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ. 1995. 311(6997). 83–86. doi: 10.1136/bmj.311.6997.83.

30. Gao H., Wei X., Liao J. et al. Lower bone mineral density in patients with parkinson’s disease: a cross–sectio–nal study from Chinese Mainland. Front. Aging Neurosci. 2015. (7)203. doi: 10.3389/fnagi.2015.00203.

31. Gifre L., Vidal J., Carrasco et al. Risk factors for the development of osteoporosis after spinal cord injury. A 12–month follow–up study. Osteoporosis International. 2015. Sep. 26(9). 2273–2280. doi: 10.1007/s00198–015–3150–x.

32. Girijala R.L., Sohrabji F., Bush R.L. Sex differences in stroke: Review of current knowledge and evidence. Vasc. Med. 2017 Apr. 22(2). 135–145. doi: 10.1177/1358863X16668263.

33. Gupta S., Ahsan I., Mahfooz N. et al. Osteoporosis and multiple sclerosis: risk factors, pathophysiology, and therapeutic interventions. CNS Drugs. 2014 Aug. 28(8). 731–742. doi: 10.1007/s40263–014–0173–3.

34. Shuhaibar M., McKenna M.J., Au–Yeong M., Redmond J.M. Favorable effect of immunomodulator therapy on bone mineral density in multiple sclerosis. Ir. J. Med. Sci. 2009 Mar. 178(1). 43–45. doi: 10.1007/s11845–008–0253–9.

35. Kalilani L., Asgharnejad M., Palokangas T., Durgin  T. Comparing the Incidence of Falls/Fractures in Parkinson’s Disease Patients in the US Population. PLoS One. 2016. 11(9). doi: 10.1371/journal.pone.0161689.

36. Huo K., Hashim S.I., Yonget K.L.Y. et al. Impact and risk factors of post–stroke bone fracture. World J. Exp. Med. 2016 Feb 20. 6(1). 1–8. doi: 10.5493/wjem.v6.i1.1.

37. Kapral M.K., Fang J., Alibhai S.M. et al. Risk of fractures after stroke: Results from the Ontario stroke registry. Neurology. 2017. 88. 57–64. doi: 10.1212/WNL.0000000000003457.

38. Kistner A., Lhommée E., Krack P. Mechanisms of Body Weight Fluctuations in Parkinson’s Disease. Front. Neurol. 2014. 5. 84. doi: 10.3389/fneur.2014.00084.

39. Knekt P., Kilkkinen A., Rissanen H. et al. Serum vitamin D and the risk of Parkinson disease. Arch. Neurol. 2010. 67. 808–811. doi: 10.1001/archneurol.2010.120.

40. Lazoura O., Groumas N., Antoniadou E. et al.: Bone mineral density alterations in upper and lower extremities 12 months after stroke measured by peripheral quantitative computed tomography and DXA. J. Clin. Densitom. 2008. 11. 511–517. doi: 10.1016/j.jocd.2008.05.097.

41. Lindskov S., Sjöberg K., Hagell P., Westergren A. Weight stability in Parkinson’s disease. An International Journal on Nutrition, Diet and Nervous System. 2016. 19. 11–20. doi: 10.1179/1476830515Y.0000000044.

42. Marks R. Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009. Int. J. Gen. Med. 2010. 3. 1–17. PMID: 20463818.

43. Marrie R.A., Cutter G., Tyry T., Vollmer T. A cross–sectional study of bone health in multiple sclerosis. Neurology. 2009 Oct 27. 73(17). 1394–1398. doi: 10.1212/WNL.0b013e3181beece8.

44. Wei M., Lyu H., Huo K., Su H. Impact of bone fracture on ischemic stroke recovery. Int. J. Mol. Sci. 2018 May. 19(5). 1533. doi: 10.3390/ijms19051533.

45. Metta V., Sanchez T., Padmakumar C. Osteoporosis: a hidden nonmotor face of parkinson’s disease. Int. Rev. Neurobiol. 2017. 134. 877–890. doi: 10.1016/bs.irn.2017.05.034.

46. Hearn A.P., Silber E. Osteoporosis in multiple sclerosis. Mult. Scler. 2010 Sep. 16(9). 1031–1043. doi: 10.1177/1352458510368985.

47. Namba S., Yamaoka–Tojo M., Hashikata T. et al. Long–term warfarin therapy and biomarkers for osteoporosis and atherosclerosis. BBA Clinical. 2015. 4. 76–80. doi: 10.1016/j.bbacli.2015.08.002.

48. Ozturk E., Gundogdu I., Tonuk B. et al. Bone mass and vitamin D levels in Parkinson’s disease: is there any difference between genders? J. Phys. Ther. Sci. 2016. 28(8). 2204–2209. doi: 10.1589/jpts.28.2204.

49. Pérez Castrillón J.L., Cano–del Pozo M., Sanz–Izquierdo S. et al. Bone mineral density in patients with multiple sclerosis: the effects of interferon. Rev. Neurol. 2003. 36(10). 901–903.

50. Raglione L., Sorbi S., Nacmias B. Osteoporosis and Parkinson’s disease. Clin. Cases Miner Bone Metab. 2011. 8(3). 16–18. PMCID: PMC3279061.

51. Sato Y., Maruoka H., Honda Y. et al. Development of osteopenia in the hemiplegic finger in patients with stroke. Eur. Neurol. 1996. 36. 278–283. PMID: 8864708.

52. Schnitzer T.J., Harvey R.L., Nack S.H. et al. Bone mineral density in patients with stroke: relationship with motor impairment and functional mobility. Top. Stroke Rehabil. 2012 Sep–Oct. 19(5). 436–43. doi: 10.1310/tsr1905–436.

53. Sioka C., Kyritsis A.P., Fotopoulos A. Multiple sclerosis, osteoporosis, and vitamin D. J. Neurol. Sci. 2009 Dec 15. 287(1–2). 1–6. doi: 10.1016/j.jns.2009.09.012.

54. Steffensen L.H., Mellgren S.I., Kampman M.T. Predictors and prevalence of low bone mineral density in fully ambulatory persons with multiple sclerosis. Neurol. 2010 Mar. 257(3). 410–418. doi: 10.1007/s00415–009–5337–6.

55. Tan L., Wang Y., Zhou L. et al. Parkinson’s Disease and Risk of Fracture: A Meta–Analysis of Prospective Cohort Studies. PLoS ONE. 2014. 9(4). e94379. doi: 10.1371/journal.pone.0094379.

56. Terzi T., Terzi M., Tander B. et al. Changes in bone mineral density and bone metabolism markers in premenopausal women with multiple sclerosis and the relationship to clinical variables. J. Clin. Neurosci. 2010 Oct. 17(10). 1260–1264. doi: 10.1016/j.jocn.2010.01.044.

57. Togari A., Arai M. Pharmacological topics of bone metabolism: the physiological function of the sympathetic nervous system in modulating bone resorption. J. Pharmacol. Sci. 2008. 106(4). 542–546. doi: 10.1254/jphs.FM0070227.

58. Togari A., Arai M., Kondo H. et al. The neuro–osteogenic network: The sympathetic regulation of bone resorption. Japanese Dental Science Review. 2012 Aug. 48(2). 61–70. doi: 10.1016/j.jdsr.2011.12.002.

59. Troy K.L., Morse L.R. Measurement of bone: diagnosis of SCI–induced osteoporosis and fracture risk prediction. Top. Spinal Cord Inj. Rehabil. 2015. 21(4). 267–274. doi: 10.1310/sci2104–267.

60. Van den Bos F., Speelman A., Samson M. et al. Parkinson’s disease and osteoporosis. Age Ageing. 2013. 42(2). 156–162. doi: 10.1093/ageing/afs161.

61. Voaklander D.C., Martin W., King–Jesso P. et al. Incidence of hip fracture in Parkinson disease: a population–based study in British Columbia, Canada. Injury Prevention. 2010. 16. A1–A289.

62. Weinstock–Guttman B., Gallagher E., Baier M. et al. Risk of bone loss in men with multiple sclerosis. Mult. Scler. 2004 Apr. 10(2). 170–175. doi: 10.1191/1352458504ms993oa.

63. Zerwekh J., Ruml L., Gottschalk F., Pak C. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J. Bone Miner Res. 1998 Oct. 13(10). 1594–601. doi: 10.1359/jbmr.1998.13.10.1594.


Back to issue