Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



Травма та її наслідки
Зала синя Зала жовта

Травма та її наслідки
Зала синя Зала жовта

Журнал «Травма» Том 22, №6, 2021

Вернуться к номеру

Аналіз напружено-деформованого стану моделі хребта із заднім спондилодезом при лікуванні сколіотичних деформацій у дітей

Авторы: Левицький А.Ф. (1), Рогозинський В.О. (1, 2), Доляницький М.М. (1, 2), Яресько О.В. (3), Карпінський М.Ю. (3)
(1) — Національний медичний університет імені О.О. Богомольця, м. Київ, Україна
(2) — Національна дитяча спеціалізована лікарня «Охматдит», м. Київ, Україна
(3) — ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка НАМН України», м. Харків, Україна

Рубрики: Травматология и ортопедия

Разделы: Клинические исследования

Версия для печати


Резюме

Актуальність. Математичне моделювання корекції сколіотичних деформацій хребта дозволяє без хірургічного втручання провести аналіз ефективності різних методів лікування в декількох варіантах. При дослідженні тракційних способів лікування застосовувалися переважно експериментальні методи досліджень. Мета: дослідити напружено-деформований стан моделей хребта з різним ступенем сколіотичної деформації при задньому спондилодезі. Матеріали та методи. Моделювали деформації хребта 40°, 70° і 100° при задньому спондилодезі хребців Th1-Th12. Використовували навантаження величиною 300 Н. Результати. При деформації 40° найбільш напруженими є ділянки вигину хребта у фронтальній площині. Для верхніх хребців Th1-Th4 спостерігається більш рівномірний розподіл напруження по тілу хребця. Для блоку хребців Th5-Th10 більш напруженою є увігнута сторона тіл хребців. У грудному відділі хребта найбільш напруженими є хребці Th2 і Th5. Основне навантаження несе фіксуюча конструкція, у якій рівень напруженого стану значно вищий, ніж у кісткових структурах хребців. У задньому опорному комплексі хребців ділянки концентрації напруження розташовані у місцях входу фіксуючих гвинтів у кістку. Збільшення величини сколіотичної деформації хребта до 70° викликає збільшення рівня напруження в усіх елементах моделі, за винятком хребців Th9-Th10. При деформації 100° у задньому опорному комплексі хребців ділянки концентрації напруження розташовані у місцях входу фіксуючих гвинтів у кістку. Рівень напруження 116,0 МПа перевищує межу міцності кортикального шару кісткової тканини хребта, що може призвести до мікроушкоджень кісткової тканини та розхитування гвинтів. Висновки. При всіх величинах сколіотичної деформації хребта найбільш напруженими є хребці Th4 та Th5. Зменшення ступеня деформації значно впливає на напружено-деформований стан хребетного стовпа. У тілі хребця Th4 рівень напруження при деформації 100° більш ніж удвічі вищий, ніж при деформації 70°, та більш ніж у 4 рази, ніж при деформації 40°. У тілі хребця Th5 рівень напруження при деформації 70° в 1,5 раза менше, ніж при деформації 100°, а при деформації 40° — менше в 3 рази. Рівень напруження в тілах хребців Th1-Th5 вищий, ніж у Th6-Th12. У задньому опорному комплексі в місцях входу гвинтів у кістку максимальне значення напруження при деформації 40° дорівнює 34,0 МПа, що не є критичним для кісткової тканини. При деформації 70° значення напруження дорівнює 85,0 МПа, що може перевищувати межу міцності для кортикальної кістки і призводити до мікроруйнування кісткової тканини в ділянці контакту «гвинт — кістка». При деформації 100° напруження дорівнює 116,0 МПа, що перевищує межу міцності для кортикальної кістки і може призвести до мікроруйнування в ділянці контакту «гвинт — кістка».

Background. Mathematical modeling of the correction of scoliotic deformities of the spine makes it possible to analyze the effectiveness of various methods of treatment without surgical intervention. In the study of traction, mainly experimental methods were used. The purpose was to investigate the stress-strain state of the spine models with varying degrees of scoliotic deformity during posterior spinal fusion. Materials and methods. Deformities of the spine of 40, 70 and 100° were modeled, with posterior spondylodesis of the Th1-Th12 vertebrae. A load of 300 N was used. Results. With a deformity of 40°, the most stressed are the areas of frontal plane curve. For the upper vertebrae Th1-Th4, a more even distribution of stress over the vertebral body is observed. For Th5-Th10 vertebrae, the concave side of the vertebral bodies is more stressed. In the thoracic spine, the more stressed vertebrae are Th2 and Th5. The main load is borne by the fixing structure, in which the level of stress is significantly higher than in the bone structures of the vertebrae. In the posterior supporting complex of the vertebrae, the stress concentration areas are located at the points where fixing screws enter the bone. An increase in the magnitude of the scoliotic deformity of the spine up to 70° causes an increase in the level of stresses in all elements of the model, with the exception of Th9-Th10 vertebrae. With a deformity of 100° in the posterior supporting complex of the vertebrae, the stress concentration areas are located at the points where fixing screws enter the bone. The stress level of 116.0 MPa exceeds the ultimate strength of the cortical layer of the bone tissue of the spine, which can lead to microdamage of the bone tissue and loosening of the screws. Conclusions. For all values of scoliotic deformity of the spine, the most stressed are Th4 and Th5 vertebrae. A decrease in the degree of deformity has a significant effect on the stress-strain state of the spinal column. In the Th4 vertebral body, the level of stresses with a deformity of 100° is more than twice as high as with a deformity of 70°, and more than 4 times higher than with a deformity of 40°. In the body of the Th5 vertebra, the stress level with a deformity of 70° is 1.5 times less than with a deformity of 100°, and with a deformity of 40°, it is 3 times less. The level of stress in the Th1-Th5 vertebral bodies is higher than that of Th6-Th12. In the posterior supporting complex, at the points where screws enter the bone, the maximum stress value at a deformity of 40° is 34.0 MPa, which is not critical for the bone tissue. With a deformity of 70°, the stresses are 85.0 MPa, which can exceed the ultimate strength for the cortical bone and lead to microdestruction of the bone tissue in the screw-bone contact area. With a deformity of 100°, the stresses are equal to 116.0 MPa, which exceeds the ultimate strength for the cortical bone and can lead to microfracture in the screw-bone contact area.


Ключевые слова

метод скінченних елементів; деформація хребта; напруження

finite element method; spinal deformity; stress


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Ghista D.N., Viviani G.R., Subbaraj K. et al. Biomechanical basis of optimal scoliosis surgical-correction. J. Biomech. 1988. № 21(2). P. 77-88. DOI: 10.1016/0021-9290(88)90001-2.
2. Lalonde N.M., Villemure I., Pannetier R. et al. Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin. Biomech. 2010. № 25. P. 510-516. DOI: 10.1016/j.clinbiomech.2010.03.009.
3. Lafage V., Dubousset J., Lavaste F., Skalli W. Finite element simulation of various strategies for CD correction. Stud. Health Technol. Inform. 2002. № 91. Р. 428-432.
4. Lafon Y., Steib J.P., Skalli W. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model. Spine (Phila Pa 1976). 2010. № 35. P. 453-459. DOI: 10.1097/BRS.0b013e3181b8eaca.
5. Salmingo R., Tadano S., Fujisaki K. et al. Corrective force analysis for scoliosis from implant rod deformation. Clin. Biomech. (Bristol, Avon). 2012. № 27. P. 545-550. DOI: 10.1016/j.clinbiomech.2012.01.004.
6. Little J.P., Izatt M.T., Labrom R.D., Askin G.N., Adam C.J. An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity. Scoliosis. 2013 May 16. № 8(1). Р. 9. DOI: 10.1186/1748-7161-8-9.
7. Петренко Д.Є., Мезенцев А.О., Яресько О.В. Аналіз напружено-деформованого стану грудного та поперекового відділів хребта після фіксації вентральним імплантатом. Літопис травматології та ортопедії. 2013. № 3–4. С. 25-29.
8. Головаха M.Л., Тяжелов А.A., Летучая Н.П., Суббота И.A., Карпинский M.Ю. Биомеханические аспекты экспериментального исследования функционального лечения С-образной сколиотической деформации позвоночника. Травма. 2019. Т. 20. № 3. С. 32-41. DOI: 10.22141/1608-1706.3.20.2019.172091.
9. Головаха М.Л., Тяжелов А.А., Летучая Н.П., Суббота И.А., Карпинский М.Ю. Биомеханические аспекты экспериментального исследования функционального лечения S-образной сколиотической деформации позвоночника. Травма. 2018. Т. 19. № 1. C. 58-68. DOI: 10.22141/1608-1706.1.19.2018.126661.
10. Kimsal J., Khraishi T. Experimental investigation of halo-gravity traction for paediatric spinal deformity correction. Int. J. Experimental and Computational Biomechanics. 2009. Vol. 1. № 2. P. 204-213. DOI: 10.1504/IJECB.2009.029197.
11. Semmelink K., Hekman E.E.G, van Griethuysen M., Bosma J., Swaan A., Kruyt M.C. Halo pin positioning in the temporal bone; parameters for safe halo gravity traction. Spine Deform. 2021 Jan. № 9(1). Р. 255-261. DOI: 10.1007/s43390-020-00194-2.
12. Fialho J. A biomechanical model for the idiopathic scoliosis using robotic traction devices. International Conference on Mathematical Modelling in Physical Sciences IOP Conf. Series: Journal of Physics. Conf. Series 1141. 2018. 012022. DOI: 10.1088/1742-6596/1141/1/012022.
13. Kong W.Z., Goel V.K. Ability of the Finite Element Mo-dels to Predict Response of the Human Spine to Sinusoidal Vertical Vibration. Spine. 2003. Vol. 28. № 17. Р. 1961-1967. DOI: 10.1097/01.BRS.0000083236.33361.C5.
14. Vidal-Lesso A., Ledesma-Orozco E., Daza-Benítez L., Lesso-Arroyo R. Mechanical Characterization of Femoral Cartilage Under Unicompartimental Osteoarthritis. Ingeniería mecánica tecnología y desarrollo. 2014. Vol. 4. № 6. Р. 239-246.
15. Shirazi-Adl A., El-Rich M., Pop D.G., Parnianpour M. Spinal muscle forces, internal loads and stability in standing under various postures and loads — application of kinematics-based algorithm. Eur. Spine J. 2005. № 14. Р. 381-392. DOI: 10.1007/s00586-004-0779-0.
16. Мезенцев А.А., Чекрижев Д.О., Карпінський М.Ю., Субота І.А. Біомеханічне моделювання умов навантаження хребта при лікуванні сколіозу методом корсетотерапії. Медицина и... 2005. № 1. С. 45-49.
17. Kurowski P.M. Engineering Analysis with SolidWorks Simulation. 2012. Published April 11, 2012. 475 р. 
18. Zienkiewicz O.C., Taylor R.L. The Finite Element Method for Solid and Structural Mechanics. Sixth ed. Butterworth-Heinemann, 2005. 736 p.

Вернуться к номеру