Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



Травма та її наслідки
Зала синя Зала жовта

Травма та її наслідки
Зала синя Зала жовта

Журнал «Травма» Том 23, №1, 2022

Вернуться к номеру

Дослідження напружено-деформованого стану моделі гомілки з переломом середньої третини великогомілкової кістки при різних варіантах остеосинтезу в умовах зростаючого стискаючого навантаження на систему «імплантат — кістка»

Авторы: Строєв М.Ю. (1), Березка М.І. (1), Григорук В.В. (1), Карпінський М.Ю. (2), Яресько О.В. (2)
(1) — Харківський національний медичний університет, м. Харків, Україна
(2) — ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка НАМН України», м. Харків, Україна

Рубрики: Травматология и ортопедия

Разделы: Клинические исследования

Версия для печати


Резюме

Актуальність. У загальній структурі травматизму переломи кісток нижніх кінцівок становлять 47,3 %. Із цих переломів перше місце займають діафізарні переломи кісток гомілки — 45–56 %. Перебіг процесу зрощення має певні особливості у третині випадків, що пов’язано з надмірною вагою. Мета: провести порівняльний аналіз напружено-деформованого стану моделей гомілки з переломом великогомілкової кістки під впливом стискаючого навантаження при різних варіантах остеосинтезу та залежно від маси тіла пацієнта. Матеріали та методи. Розроблена базова скінченно-елементна модель гомілки, яка містила великогомілкову й малогомілкову кістки та кістки стопи. У всіх суглобах між кістковими елементами робили прошарок із механічними властивостями хрящової тканини. Моделювали перелом в середній третині великогомілкової кістки та три види остеосинтезу за допомогою апарата зовнішньої фіксації, накісткової пластини та інтрамедулярного стрижня. Усі моделі досліджували під впливом вертикального стискаючого навантаження величиною 700 та 1200 Н. Результати. Зміни величин напружень у кістковій тканині залежно від маси тіла пацієнта мають лінійну залежність. Апарат зовнішньої фіксації та інтрамедулярний стрижень забезпечують зниження величин напружень в зоні перелому нижче рівня показників для неушкодженої кістки. Накісткова пластина показує значно гірші показники рівня напружень як в зоні перелому, так і в проксимальному відділі великогомілкової кістки. У дистальному відділі найвищий рівень напружень визначається в моделі з остеосинтезом апаратом зовнішньої фіксації. У металевих конструкціях найбільші напруження виникають в накістковій пластині. Навколо фіксуючих гвинтів та стрижнів найвищі напруження визначаються при використанні апарата на нижньому стрижні. Висновки. Найгірші показники рівня напружень в зоні перелому (від 26,5 до 45,4 МПа) та на металевій конструкції (від 227,5 до 389,9 МПа) визначено при використанні накісткової пластини, що є наслідком виникнення додаткового згинаючого моменту в результаті її однобічного розташування. Остеосинтез за допомогою апарата зовнішньої фіксації забезпечує досить низький рівень напружень (від 0,7 до 1,2 МПа) в зоні перелому, але недоліком є високій рівень напружень на самому апараті (від 133,7 до 229,2 МПа) та в дистальному відділі великогомілкової кістки (від 13,2 до 22,6 МПа), що пов’язане з довжиною важелів, якими є фіксуючі стрижні. Найнижчі показники напружень у всіх елементах моделі визначаються при використанні остеосинтезу інтрамедулярним стрижнем, що обумовлено центральним розташуванням основної опори за віссю навантаження та короткими важелями, якими є фіксуючі гвинти. Функція залежності величини напружень в елементах моделі є лінійною та прямо пропорційною.

Background. In the general structure of injuries, fractures of the bones of the lower extremities account for 47.3 %. Of these fractures, in the first place are the diaphyseal fractures of the shin bones, accounting for 45–56 %. The course of the fusion process has certain features in a third of cases, which are associated with excess weight. The purpose was to carry out a comparative analysis of the stress-strain state of the models of the tibia with a fracture of the tibia under the influence of a compressive load with different variants of osteosynthesis and depending on the patient’s weight. Materials and methods. A basic finite element model of the tibia was developed, which contained the tibia, fibula, and foot bones. In all joints, an interlayer was made between the bone elements with the mechanical properties of cartilage tissue. A fracture in the middle third of the tibia and three types of osteosynthesis were simulated using an external fixation apparatus, extramedullary plate, and intramedullary nail. All models were tested under the influence of vertical compressive loads of 700 and 1200 N. Results. Changes in tissue stress values depending on the patient’s weight have a linear relationship. An external fixation device and an intramedullary nail provide a decrease in the stress values in the fracture zone below the level of indices for an intact bone. The extracorporeal plate shows significantly worse indicators of the level of stress, both in the fracture zone and in the proximal tibia. In the distal region, the highest stress level is determined in the model with osteosynthesis with an external fixation device. In metal structures, the greatest stresses arise in the extramedullary plate. Around the fixing screws and rods, the highest stresses are determined when the apparatus is used on the lower rod. Conclusions. The worst indicators of the stress level in the fracture zone (from 26.5 to 45.4 MPa) and in the metal structure (from 227.5 to 389.9 MPa) were determined using an extra-bone plate, which is a consequence of the appearance of an additional bending moment as a result of its one-sided arrangement. Osteosynthesis using an external fixation device provides a fairly low level of stress (from 0.7 to 1.2 MPa) in the fracture zone, but the disadvantage is a high level of stress on the device itself (from 133.7 to 229.2 MPa) and in the remote department tibia (from 13.2 to 22.6 MPa), which is associated with the length of the levers, which are the fixing rods. The lowest stress indices in all elements of the model are determined when using osteosynthesis with an intramedullary nail, which is due to the central location of the main support along the load axis and short levers, which are fixing screws. The function of the dependence of the magnitude of stresses in the elements of the model is linear and directly proportional.


Ключевые слова

остеосинтез; гомілка; середня третина; вага

osteosynthesis; tibia; middle third; weight


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Березовский В.А., Колотилов Н.Н. Биофизические характеристики тканей человека: Справочник. К.: Наукова думка, 1990. 224 с.
2. Стойко И.В., Бец Г.В., Бец И.Г., Карпинский М.Ю. Анализ напряженно-деформированного состояния дистального отдела голени и стопы при повреждениях pilon в условиях наружной фиксации при помощи стержневых аппаратов. Травма. 2014. Т. 15. № 1. С. 41-49. DOI: 10.22141/1608-1706.1.15.2014.81263.
3. Корж М.О., Романенко К.К., Прозоровський Д.В., Карпінський М.Ю., Яресько О.В. Математичне моделювання впливу деформації кісток гомілки на навантаження суглобів нижньої кінцівки. Травма. 2016. Т. 17. № 3. С. 23-24. 
4. Васюк В.Л., Коваль О.А., Карпінський М.Ю., Яресько О.В. Математичне моделювання варіантів остеосинтезу переломів дистального метаепіфіза великогомілкової кістки типу С1. Травма. 2019. Т. 20. № 1. С. 37-46. DOI: 10.22141/1608-1706.1.20.2019.158666.
5. Gere J.M., Timoshenko S.P. Mechanics of Material. 1997. P. 912.
6. Зенкевич О.К. Метод конечных элементов в технике. М.: Мир, 1978. 519 с.
7. Алямовский А.А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М.: ДМК Пресс, 2004. 432 с.
8. Гайко Г.В., Калашников А.В., Боер В.А. и др. Диафизарные переломы в структуре травматизма населения Украины. Тези доповідей XIV з’їзду ортопедів-травматологів України. Одеса, 2016. С. 9-10.
9. Березка М.І., Григорук В.В., Строєв М.Ю. Проблема надмірної ваги при лікуванні пацієнтів із переломами кісток гомілки. Міжнародний медичний журнал. 2021. № 2. С. 43-46.
10. Kinder F., Giannoudis P.V., Boddice T., Howard A. The Effect of an Abnormal BMI on Orthopaedic Trauma Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2020. 9(5). 1302. https://doi.org/10.3390/jcm9051302
11. Parratte S., Pesenti S., Argenson J.N. Obesity in orthopedics and trauma surgery. Orthopaedics & traumatology, surgery & research: OTSR. 2014. 100(1 Suppl.). S91-S97. https://doi.org/10.1016/j.otsr.2013.11.003
12. Білінський П.І. Малоконтактний багатоплощинний остеосинтез діафізарних переломів кісток гомілки. Шпитальна хірургія. Журнал імені Л.Я. Ковальчука. 2015. № 3. С. 54-58.

Вернуться к номеру