Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



UkrainePediatricGlobal

UkrainePediatricGlobal

Журнал «Здоровье ребенка» Том 18, №3, 2023

Вернуться к номеру

Генетично детермінована рецепція вітаміну D при метаболічно нездоровому ожирінні в дітей

Авторы: A. Abaturov, A. Nikulina
Dnipro State Medical University, Dnipro, Ukraine

Рубрики: Педиатрия/Неонатология

Разделы: Клинические исследования

Версия для печати


Резюме

Актуальність. Геномні ефекти вітаміну D визначаються конформаційними змінами в структурі рецептора вітаміну D (vitamin D receptor — VDR), детермінованими однонуклеотидними варіантами (single nucleotide variants — SNV) гена VDR. Метою нашого дослідження є вивчення асоціації SNV гена VDR із метаболічно нездоровим ожирінням (МНО) в дітей. Матеріали та методи. Обстежено 252 дитини з ожирінням віком 6–18 років. Основну групу (n = 152) становили діти з МНО. Контрольну групу (n = 100) представили діти з метаболічно здоровим ожирінням. У 31 дитини основної та 21 дитини контрольної груп проведено повногеномне секвенування (CeGat, Germany). В усіх пацієнтів вимірювали рівень сироваткового 25-гідроксивітаміну D (Synevo, Ukraine). Для верифікації результатів застосовували розрахунок коефіцієнта кореляції Спірмена (r) і p-значення для кожної змінної, а також біоінформаційний аналіз. Результати. Ідентифіковано п’ять SNV гена VDR: rs2228570 (1 варіація числа копій ДНК (CNV): c.2T>C у 94,23 %); rs731236 (2 CNV: c.11056T>C, c.1206T>C у 65,38 %); rs10783218 (2 CNV: c.296+8C>T, c.146+8C>T у 7,69 %); rs2228572 (2 CNV: c.57C>T, c.207C>T в 1,92 %); rs12721365 (2 CNV: c.1059C>T, c.909C>T в 1,92 % пацієнтів). Кореляція між дефіцитом вітаміну D і SNV VDR відзначена для таких генотипів: AA rs12721365 (r = 0,41), AA rs2228572 (r = 0,39) та GG rs 2228570 (r = –0,27), p < 0,05. Кореляція між SNV VDR та МНО спостерігалася при таких генотипах: AA rs12721365 (r = 0,21), AA rs2228572 (r = 0,21), GG rs731236 (r = –0,15) та GG rs2228570 (r = –0,31), p < 0,05. ­Висновки. Генотипи AG SNV VDR rs12721365, rs2228572 високо асоційовані з розвитком МНО.

Background. Genomic effects of vitamin D are determined by conformational changes in the structure of the vitamin D receptor (VDR) determined by single nucleotide variants (SNV) of the VDR gene. The purpose is to study the association of the SNV of the VDR gene with metabolically unhealthy obesity (MUO) in children. Materials and methods. Two hundred and fifty-two obese children aged 6–18 years were examined. The main group (n = 152) was represented by patients with MUO. The control group (n = 100) consisted of children with metabolically healthy obesity. Whole genome sequencing (CeGat, Germany) was performed in 31 children of the main group and 21 controls. The level of serum 25-hydroxyvitamin D (Synevo, Ukraine) was measured in all patients. To verify the results, Spearman’s correlation coefficient (r) and p-value for each variable were calculated. Results. Five SNVs of the VDR gene were identified: rs2228570 (1 DNA copy number variation (CNV): c.2T>C in 94.23 %); rs731236 (2 CNV: c.11056T>C, c.1206T>C in 65.38 %); rs10783218 (2 CNV: c.296+8C>T, c.146+8C>T in 7.69 %); rs2228572 (2 CNV: c.57C>T, c.207C>T in 1.92 %); rs12721365 (2 CNV: c.1059C>T, c.909C>T in 1.92 % of patients). A correlation between SNV VDR and MUO was observed in the following genotypes: AA rs12721365 (r = 0.21), AA rs2228572 (r = 0.21), GG SNV rs731236 (r = –0.15) and GG rs2228570 (r = –0.31), p < 0.05. Conclusions. The genotypes AG SNV VDR rs12721365, rs2228572 are highly associated with the development of MUO.


Ключевые слова

ген рецептора вітаміну D; секвенування наступного покоління; аналіз однонуклеотидних варіантів гена; діти; метаболічно нездорове ожиріння

vitamin D receptor gene; next generation sequencing; analysis of single nucleotide gene variants; children; metabolically unhealthy obesity


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Абатуров О.Є., Нікуліна А.О. Роль основних ефекторних клітин вродженої імунної системи в розвитку метазапалення жирової тканини при ожирінні. Здоров’я дитини. 2020. 5(15). 123-137. doi: 10.22141/2224-0551.15.5.2020.211448.
2. Abaturov A.E., Nikulina A.O. Association of leptin receptor gene polymorphisms and meta-inflammation markers with metabolically unhealthy obesity in children. Zaporozhye Medical Journal. 2021. 23(5). 696-702. doi: 10.14739/2310-1210.2021.5.227291.
3. Abaturov A.Е., Nikulina A.А. Genotype C/C 13910 of the Lactase Gene as a Risk Factor for the Formation of Insulin-Resistant Obesity in Children. Acta Medica (Hradec Králové). 2019. 62(4). 150-155. doi: 10.14712/18059694.2020.4.
4. Agliardi C., Guerini F.R., Zanzottera M. et al. The VDR FokI (rs2228570) polymorphism is involved in Parkinson’s disease. J. Neurol. Sci. 2021. 428. 117606. doi: 10.1016/j.jns.2021.117606.
5. Alathari B.E., Sabta A.A., Kalpana C.A. et al. Vitamin D pathway-related gene polymorphisms and their association with metabolic diseases: a literature review. J. Diabetes Metab. Disord. 2020. 19(2). 1701-1729.
6. Alberti K.G., Zimmet P., Kaufman F. et al. The IDF consensus definition of the metabolic syndrome in children and adolescents. International Diabetes Federation. 2017. 17-19. Available from: https://www.idf.org/e-library/consensus-statements/61-idf-consensus-definition-of-metabolic-syndrome-in-children-and-adolescents.
7. Apaydın M., Beysel S., Eyerci N. et al. The VDR gene FokI polymorphism is associated with gestational diabetes mellitus in Turkish wo–men. BMC Med. Genet. 2019. 20(1). 82.
8. Barchetta I., Cimini F.A., Cavallo M.G. Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients. 2020. 12(11). 3302. doi: 10.3390/nu12113302.
9. Bikle D.D. Vitamin D: Production, Metabolism and Mechanisms of Action. 2021 Dec 31. In: Feingold K.R., Anawalt B., Blackman M.R. et al., eds. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.
10. Borges C.C., Salles A.F., Bringhenti I. et al. Vitamin D Deficiency Increases Lipogenesis and Reduces Beta-Oxidation in the Liver of Diet-Induced Obese Mice. J. Nutr. Sci. Vitaminol. (Tokyo). 2018. 64(2). 106-115. doi: 10.3177/jnsv.64.106.
11. Chowdhary R., Khan R.B., Masarkar N. et al. An association of VDR gene polymorphism in hypovitaminosis D mediated secondary hyperparathyroidism in adolescent girls: a tertiary hospital study in central India. Steroids. 2022. 185. 109054. doi: 10.1016/j.steroids.2022.109054.
12. Clemente-Postigo M., Muñoz-Garach A., Serrano M. et al. Serum 25-hydroxyvitamin D and adipose tissue vitamin D receptor gene expression: relationship with obesity and type 2 diabetes. J. Clin. Endocrinol. Metab. 2015. 100(4). E591-E595. doi: 10.1210/jc.2014-30166.
13. Cong L., Wang W.B., Liu Q. et al. FokI Polymorphism of the Vitamin D Receptor Gene Is Associated with Susceptibility to Gastric Cancer: A Case-Control Study. Tohoku J. Exp. Med. 2015 Jul. 236(3). 219-24. doi: 10.1620/tjem.236.219.
14. Deelen P., Bonder M.J., van der Velde K.J. et al. Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res. Notes. 2014. 7. 901. doi: 10.1186/1756-0500-7-901.
15. Dempfle A., Wudy S.A., Saar K. et al. Evidence for involvement of the vitamin D receptor gene in idiopathic short stature via a genome-wide linkage study and subsequent association studies. Hum. Mol. Genet. 2006 Sep 15. 15(18). 2772-83. doi: 10.1093/hmg/ddl218.
16. Draznin B., Aroda V.R., Bakris G. et al.; American Diabetes Association Professional Practice Committee. 6. Glycemic targets: Standards of Medical Care in Diabetes 2022. Diabetes Care. 2022. 45 (Suppl. 1). 83-96. doi: 10.2337/dc22-S006.
17. Elkins C., Fruh Sh., Jones L. et al. Clinical Practice Recommendations for Pediatric Dyslipidemia. Journal of Pediatric Health Care. 2019. 33(4). 494-504. doi: 10.1016/j.pedhc.2019.02.009.
18. Erasmus R., Maepa S., Machingura I. et al. Vitamin D, Vitamin D-Binding Proteins, and VDR Polymorphisms in Individuals with Hyperglycaemia. Nutrients. 2022. 14(15). 3147. doi: 10.3390/nu14153147.
19. Fiaz H., Khan A.R., Abbas S. et al. Association of vitamin D receptor polymorphisms with cardiometabolic conditions in Pakistani population. Int. J. Vitam. Nutr. Res. 2022. doi: 10.1024/0300-9831/a000772.
20. Filgueiras M.S., Suhett L.G., Silva M.A. et al. Lower vitamin D intake is associated with low HDL cholesterol and vitamin D insufficiency/deficiency in Brazilian children. Public Health Nutr. 2018. 21(11). 2004-2012. doi: 10.1017/S1368980018000204.
21. Flynn J.T., Kaelber D.C., Baker-Smith C.M. et al. Subcommittee on screening and management of high blood pressure in children. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017 Sep. 140(3). e20171904. doi: 10.1542/peds.2017-1904.
22. González Rojo P., Pérez Ramírez C., Gálvez Navas J.M. et al. Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomar–ker of Cardiovascular Disease. Int. J. Mol. Sci. 2022. 23(15). 8686. doi: 10.3390/ijms23158686.
23. Gross A.M., Ajay S.S., Rajan V. et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease. Genet. Med. 2019. 21. 1121-1130. doi: 10.1038/s41436-018-0295-y.
24. He L., Wang M. Association of vitamin D receptor-a gene polymorphisms with coronary heart disease in Han Chinese. Int. J. Clin. Exp. Med. 2015. 8(4). 6224-6229.
25. Hongshan J., Rong L., Shou-Wei D. et al. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014. 15. 182. doi: 10.1186/1471-2105-15-182.
26. Krasniqi E., Boshnjaku A., Wagner K.H. et al. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass and Function: A Systematic Review. Nutrients. 2021. 13(9). 3109.
27. Lacerda de Lucena L., Silva A.S., Nascimento R.A.F.D. et al. Relationship between BsmI polymorphism and VDR gene methylation profile, gender, metabolic profile, oxidative stress, and inflammation in adolescents. Nutr. Hosp. 2021. 38(5). 911-918. doi: 10.20960/nh.03383.
28. Latic N., Erben R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020. 21(18). 6483.
29. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009. 25(14). 1754-1760. doi: 10.1093/bioinformatics/btp324.
30. Ma L., Wang S., Chen H. et al. Diminished 25-OH vitamin D3 levels and vitamin D receptor variants are associated with susceptibility to type 2 diabetes with coronary artery diseases. J. Clin. Lab. Anal. 2020. 34(4). e23137. doi: 10.1002/jcla.23137.
31. Mahjoubi I., Kallel A., Sbaï M.H. et al. Lack of association between FokI polymorphism in vitamin D receptor gene (VDR) & type 2 diabetes mellitus in the Tunisian population. Indian J. Med. Res. 2016 Jul. 144(1). 46-51. doi: 10.4103/0971-5916.193282.
32. Mahto H., Tripathy R., Das B.K. et al. Association between vitamin D receptor polymorphisms and systemic lupus erythematosus in an Indian cohort. Int. J. Rheum. Dis. 2018 Feb. 21(2). 468-476. doi: 10.1111/1756-185X.13245.
33. Maia J., da Silva A.S., do Carmo R.F. et al. The association between vitamin D receptor gene polymorphisms (TaqI and FokI), type 2 diabetes, and micro-/macrovascular complications in postmenopausal wo–men. Appl. Clin. Genet. 2016. 9. 131-136. doi: 10.2147/TACG.S101410.
34. Malecki M.T., Frey J., Moczulski D. et al. Vitamin D receptor gene polymorphisms and association with type 2 diabetes mellitus in a Po–lish population. Exp. Clin. Endocrinol. Diabetes. 2003. 111(8). 505-509. doi: 10.1055/s-2003-44711.
35. Maruthai K., Sankar S., Subramanian M. Methylation Status of VDR Gene and its Association with Vitamin D Status and VDR Gene Expression in Pediatric Tuberculosis Disease. Immunol. Invest. 2022. 51(1). 73-87. doi: 10.1080/08820139.2020.1810702.
36. Memon M.A., Baig S., Siddiqui P.Q.R. Fok1 VDR Gene Polymorphisms as the Risk factor for Diabetes Mellitus. J. Coll. Physicians Surg. Pak. 2022. 32(5). 581-585. doi: 10.29271/jcpsp.2022.05.581.
37. Mose L.E., Wilkerson M.D., Hayes D.N. et al. ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics. 2014. 30(19). 2813-2815. doi: 10.1093/bioinformatics/btu376.
38. Neves J.P.R., Queiroz D.J.M., Araújo E.P.S. et al. Variants rs1544410 and rs2228570 of the vitamin D receptor gene and glycemic levels in adolescents from Northeast Brazil. Nutr. Hosp. 2020. 37(1). 21-27. doi: 10.20960/nh.02587.
39. Peplies J., Börnhorst C., Günther K. et al. IDEFICS consortium. Longitudinal associations of lifestyle factors and weight status with insulin resistance (HOMA-IR) in preadolescent children: the large prospective cohort study IDEFICS. Int. J. Behav. Nutr. Phys. Act. 2016 Sep 2. 13(1). 97. doi: 10.1186/s12966-016-0424-4.
40. Pilz S., Zittermann A., Trummer C. et al. Vitamin D testing and treatment: a narrative review of current evidence. Endocr. Connect. 2019 Feb 1. 8(2). R27-R43. doi: 10.1530/EC-18-0432.
41. Pramono A., Jocken J.W.E., Essers Y.P.G. et al. Vitamin D and Tissue-Specific Insulin Sensitivity in Humans With Overweight/Obesity. J. Clin. Endocrinol. Metab. 2019. 104(1). 49-56. doi: 10.1210/jc.2018-00995.
42. Raljević D., Peršić V., Markova-Car E. et al. Study of vitamin D receptor gene polymorphisms in a cohort of myocardial infarction patients with coronary artery disease. BMC Cardiovascular Disorders. 2021. 21(1). 188. doi: 10.1186/s12872-021-01959-x.
43. RefSeq: NCBI Reference Sequence Database. https://www.ncbi.nlm.nih.gov/refseq.
44. Richards S., Aziz N., Bale S. et al.; ACMG Laboratory Qua–lity Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015 May. 17(5). 405-24. doi: 10.1038/gim.2015.30.
45. Ruiz-Ballesteros A.I., Meza-Meza M.R., Vizmanos-Lamotte B. et al. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int. J. Mol. Sci. 2020 Dec 17. 21(24). 9626. doi: 10.3390/ijms21249626.
46. Saggese G., Vierucci F., Prodam F. et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018 May 8. 44(1). 51. doi: 10.1186/s13052-018-0488-7.
47. Sattar N.A., Shaheen S., Hussain F. et al. Association analysis of vitamin D receptor gene polymorphisms in North England population with type 2 diabetes mellitus. Afr. Health Sci. 2021 Mar. 21(1). 8-14. doi: 10.4314/ahs.v21i1.3.
48. Shi X.Y., Huang A.P., Xie D.W. et al. Association of vitamin D receptor gene variants with polycystic ovary syndrome: a meta-analysis. BMC Med. Genet. 2019. 20(1). 32. doi: 10.1186/s12881-019-0763-5.
49. Stenson P.D., Mort M., Ball E.V. et al. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 2020. 139(10). 1197-1207. doi: 10.1007/s00439-020-02199-3.
50. Triantos C., Aggeletopoulou I., Kalafateli M. et al. Prognostic significance of vitamin D receptor (VDR) gene polymorphisms in liver cirrhosis. Sci. Rep. 2018 Sep 14. 8(1). 14065. doi: 10.1038/s41598-018-32482-3.
51. Usategui-Martín R., De Luis-Román D.A., Fernández-Gómez J.M. et al. Vitamin D Receptor (VDR) Gene Polymorphisms Mo–dify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022 Jan 15. 14(2). 360. doi: 10.3390/nu14020360.
52. Wimalawansa S.J. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J. Steroid Biochem. Mol. Biol. 2018. 175. 177-189. doi: 10.1016/j.jsbmb.2016.09.017.
53. Wu H., Ballantyne C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020. 126(11). 1549-1564. doi: 10.1161/CIRCRESAHA.119.315896.
54. Xenos K., Papasavva M., Raptis A. et al. Vitamin D Supplementation and Genetic Polymorphisms Impact on Weight Loss Diet Outcomes in Caucasians: A Randomized Double-Blind Placebo-Controlled Clinical Study. Front. Med. (Lausanne). 2022. 9. 811326. doi: 10.3389/fmed.2022.811326.
55. Yan X., Wei Y., Wang D. et al. Four common vitamin D receptor polymorphisms and coronary artery disease susceptibility: a trial sequential analysis. PLoS One. 2022 Oct 3. 17(10). e0275368. doi: 10.1371/journal.pone.0275368.
56. Yuzbashian E., Asghari G., Hedayati M. et al. Determinants of vitamin D receptor gene expression in visceral and subcutaneous adipose tissue in non-obese, obese, and morbidly obese subjects. J. Steroid Biochem. Mol. Biol. 2019. 187. 82-87. doi: 10.1016/j.jsbmb.2018.11.004.
57. Zatterale F., Longo M., Naderi J. et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020. 10. 1607. doi: 10.3389/fphys.2019.01607.

Вернуться к номеру