Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ
день перший
день другий

АКУШЕРИ ГІНЕКОЛОГИ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ
день перший
день другий

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

"Child`s Health" 1 (60) 2015

Back to issue

Активированные кислородсодержащие метаболиты организма человека при заболеваниях органов дыхания. Генераторы и генерация (часть 1)

Authors: Абатуров А.Е. — ГУ «Днепропетровская медицинская академия Министерства здравоохранения Украины»; Волосовец А.П. — Национальный медицинский университет им. А.А. Богомольца, г. Киев; Юлиш Е.И., Чернышова О.Е. — Донецкий национальный медицинский университет им. М. Горького

Categories: Pediatrics/Neonatology

Sections: Specialist manual

print version


Summary

В обзоре даны общие представления об активированных кислородсодержащих метаболитах человеческого организма при заболеваниях органов дыхания.

В огляді подано загальні уявлення про активовані кисневмісні метаболіти людського організму при захворюваннях органів дихання.

This review gives a general idea of the activated oxygen-containing metabolites of the human body in respiratory diseases.


Keywords

активированные кислородсодержащие метаболиты, заболевания органов дыхания.

активовані кисневмісні метаболіти, захворювання органів дихання.

activated oxygen-containing metabolites, respiratory diseases.

Статья опубликована на с. 173-180

Введение

При инфекционно-воспалительных заболеваниях бронхолегочной системы в ответ на провоспалительные стимулы эпителиальные клетки респираторного тракта, активированные альвеолярные макрофаги и нейтрофилы продуцируют супероксид анион-радикал (O2) и монооксид азота (NO), которые обладают мощными бактерицидными свойствами и являются важнейшими компонентами неспецифической противоинфекционной защиты человеческого организма [13, 41]. Активированные кислородсодержащие (АКМ) и азотсодержащие метаболиты (ААК) образуются в организме в результате нескольких химических реакций (табл. 1).

Общая характеристика активированных кислородсодержащих метаболитов

Считают, что в организме человека 2–5 % поглощенного кислорода превращается в АКМ. Активированные кислородсодержащие метаболиты — это свободные радикалы, у которых на внешней электронной оболочке находится неспаренный электрон. Основными представителями АКМ являются: радикальные супероксид анион-радикал (O2), гидроксильный (OH) и гидропероксидный (HO2) радикалы, карбонатный радикал (CO2), RO2, RO и нерадикальные дериваты кислорода — перекись водорода (H2O2), синглетный кислород (1О2), озон (O3). Средняя концентрация АКМ в тканях человека в физиологических условиях составляет 10–8 ммоль. У млекопитающих основными генераторами АКМ являются фагоцитирующие клетки: гранулоциты, моноциты, макрофаги, нейтрофилы, эозинофилы. Мембраны фагоцитов содержат ферментативный комплекс — никотинамидадениндинуклеотидфосфат (НАДФН)-оксидазу. В фагоцитах активация комплекса НАДФН-оксидазы сопровождается развитием «окислительного взрыва» — избыточного образования O2 [3, 39, 43]. Во время респираторного взрыва профессиональные фагоциты могут высвободить от 3 до 4 нмоль АКМ на каждый миллион клеток в минуту. Большая часть образованной и высвобожденной во внеклеточное пространство H2O2 диффундирует через плазматические мембраны в клетку [17]. Основными генераторами H2O2 в респираторном тракте являются фагоциты и эпителиоциты (табл. 2).

Активированные кислородсодержащие метаболиты являются важнейшими компонентами неспецифической защиты от инфекционных агентов. Концентрация АКМ во внутреннем пространстве фагосом достигает высокого уровня: супероксидного анион-радикала — 30 мкмоль, перекиси водорода при отсутствии миелопероксидазы — более 100 мкмоль [17]. Показано, что уровень содержания АКМ, в частности H2O2, в конденсате выдыхаемого воздуха у пациентов с острыми инфекционно-воспалительными заболеваниями респираторного тракта значительно выше, чем у здоровых людей [29]. Исследования содержания H2O2 в конденсате выдыхаемого воздуха у людей как в состоянии здоровья, так и при различных заболеваниях позволили установить, что хроническое воспаление и гипоксические состояния сопровождаются повышением концентрации H2O2 в выдыхаемом воздухе (табл. 3). Так, у больных бронхиальной астмой концентрация Н2О2 в конденсате выдыхаемого воздуха может быть в 6 раз, а у пациентов с хронической обструктивной болезнью легких (ХОБЛ) — в 20 раз выше, чем у здоровых людей [16, 23].

Длительное течение воспалительного процесса может привести к снижению количества реснитчатых клеток и, как следствие, дефициту бактерицидной активности бронхиального секрета. Превышение внутриклеточной концентрации Н2О2 уровня в 10 мкмоль/л токсично для эпителиоцитов [31].

Нарушение окислительно-восстановительного равновесия, обусловленное генерацией АКМ, активирует множество АКМ-сенситивных внутриклеточных сигнальных путей, которые индуцируют продукцию провоспалительных и апоптотических медиаторов, играющих ключевую роль в защите организма. Помимо активации фагоцитирующих клеток основными причинами, которые могут привести к значимому увеличению генерации АКМ, являются: нарушение транспорта электронов в электронтранспортной цепи митохондрий; индукция гиперметаболизма; возбуждение системы ксантин-ксантиноксидазы; увеличение пула ионов металлов с переменной валентностью. Высокий уровень концентрации АКМ обусловливает окисление липидов, белков и нуклеиновых кислот, лишая их первичной физиологической активности, и деградация молекул-мишеней. АКМ, вступая во взаимодействие с протеинами, липидами, нуклеиновыми кислотами клетки, инициируют вторичные свободнорадикальные реакции. Агрессивное действие АКМ может лежать в основе ускорения процесса старения и развития сердечно-сосудистых, аутоиммунных и других заболеваний [2, 11, 12, 15, 26].

Генераторы АКМ

Краткая характеристика НАДФН-оксидазы и других представителей семейства NOX

В клетке основным источником электронов является электронтранспортная цепь митохондрий (табл. 4).

В связи с этим основное количество O2 образуется в митохондриях (рис. 1) [8, 36].

В электронтранспортной цепи митохондрий, кроме 4-электронного восстановления О2 до Н2О, происходит и 1-, 2-, 3-электронное восстановление с образованием АКМ (рис. 2) [3, 6].

Генерация O2 в организме человека также осуществляется ксантиноксидазой, ксантиндегидрогеназой, альдегидоксидазой, микросомальными монооксигеназами, цитохромом P450, тираминазой, липооксигеназой, циклооксигеназой и др. В настоящее время известно более 1000 ферментов класса оксидаз и оксигеназ и около 1200 генов, кодирующих их структуру. Донорами электронов являются ионы металлов с переменной валентностью, преимущественно Fe2+, а также Cu2+, которые включены в каталитический центр молекул ферментов. Из рецепторассоциированных генераторов O2 определяющим ферментом является НАДФН-оксидаза, которая окисляет НАДФН до НАДФ+ за счет восстановления O2 до супероксид аниона-радикала: НАДФН + 2O2 НАДФ+ + 2O2. В отличие от других оксидоредуктаз НАДФН-оксидаза является «профессиональным» продуцентом АКМ [3, 4, 30, 34].

Мультикомпонентный флавожелезопротеид — НАДФН-оксидаза — терминальный ферментный электронный акцептор внутриклеточной электронтранспортной цепи митохондрий. Молекула НАДФН-оксидазы состоит из шести гетеросубъединиц, которые в неактивном состоянии пространственно разобщены во внутриклеточном континууме клетки (табл. 5) [22].

Такие субъединицы НАДФН-оксидазы, как большой гликопротеин gp91phox и маленький протеин p22phox, связаны с цитоплазматической мембраной клетки, а p67phox, p47phox, p40phox и представитель семейства Rho малых ГТФаз (Rac1 или Rac2) расположены в цитоплазме клетки [14, 35].

Две протеиновые мембраносвязанные оксидазные субъединицы НАДФН-оксидазы — gp91phox и p22phox — формируют гетеродимерный флавоцитохром b558 (Сytb558), который составляет каталитическое ядро фермента (рис. 3) и в отсутствие других цитоплазматических субъединиц НАДФН-оксидазы, играющих преимущественно регулирующую роль, пребывает в состоянии покоя [14, 21, 42].

Протеины Rac семейства Rho малых ГТФаз представляют собой молекулярные «выключатели», которые регулируют разнообразные внутриклеточные сигнальные пути, активирующие адгезию, фагоцитоз, цикличность жизни клетки, обеспечивающие взаимодействие мембранных рецепторов и цитоскелета клетки. В неактивном состоянии Rac находятся в тесной ассоциации с протеином RhoGDI. Активация Rac играет ключевую роль в процессе фагоцитоза и влияет на процесс активации киназ, участвующих в фосфорилировании компонентов НАДФН-оксидазы [20, 21].

В течение последнего десятилетия было продемонстрировано, что НАДФH-оксидазная активность характерна и для нефагоцитирующих клеток. Исследования данного феномена привело к открытию различных изоформ НАДФH-оксидазы, которые были объединены в семейство ферментов NOX. Семейство NOX представляют гомологические формы субъединицы gp91phox, физиологической функцией которых является генерация супероксид аниона-радикала [28, 38]. Семейство NOX включает в себя семь ферментов — NOXL, NOX2 (gp91phox), NOX3, NOX4, NOX5, DUOX1, и DUOX2. Молекулярная структура всех представителей семейства NOX состоит из 6 трансмембранных областей с двумя железосвязывающими регионами и длинного цитоплазматического C-терминального домена, который содержит флавинаденина динуклеотид (ФАД)- и НАДФ-связывающие регионы. Протеины NOX5, DUOX1 и DUOX2 отличаются удлиненным N-терминальным доменом и наличием внутриклеточных EF-рука-Ca2+-связывающих доменов (рис. 4) [9, 30].

Для ферментов семейства NOX характерна тканеспецифическая экспрессия. NOX1 преимущественно экспрессируется в толстой кишке и обнаруживается в эпителиоцитах респираторного тракта, в тканях матки и простаты; NOX2 (gp91phox) — в нейтрофилах, моноцитах, макрофагах, эозинофилах; NOX3 — исключительно в кортиевом органе, спиральных ганглиях внутреннего уха, эндотелиоцитах; NOX4 — в тканях почки, сердца, поджелудочной железы, поперечнополосатых и гладких мышцах, яичнике, яичках, эндотелии, остеокластах, фибробластах, астроцитах; NOX5 — в лимфоидных тканях и яичке, преимущественно в сперматоцитах; DUOX1 — в ткани щитовидной железы и в эпителии респираторного тракта, DUOX2 — в ткани щитовидной железы и в эпителии респираторного и пищеварительного тракта [25, 27]. Представители семейства NOX локализованы в различных компартментах клетки. Так, NOX1 находится в кавеолиновых ямках клеточной мембраны, NOX2 — в мембранных участках, формирующих фагосому, и на ламеллиподии.

Также NOX1 и NOX2 локализуются на мембранах «редоксом» — эндосом, ответственных за раннюю рецепторопосредованную сигнализацию в нефагоцитирующих клетках. Внутриклеточная локализация протеина NOX3 изучена недостаточно, он преимущественно связан с цитоплазматической мембраной. NOX4 идентифицируется на мембранах ядра и эндоплазматического ретикулума, где он взаимодействует с киназами и фосфатазами. NOX5 находится на внутренних мембранах клетки, DUOX1/2 — на цитоплазматической мембране клетки [9]. В отличие от NOX2 фагоцитирующих клеток другие изоформы NOX нефагоцитирующих клеток не ограничиваются локализацией на клеточной мембране [7]. Уровень экспрессии DUOX1 и DUOX2 эпителиоцитами респираторного тракта в 1000 раз выше, чем других изоформ NOX [37]. Краткая функциональная характеристика представителей семейства NOX представлена в табл. 6.


Bibliography

1. Абатуров А.Е. Активированные кислородсодержащие метаболиты — компоненты системы неспецифической защиты респираторного тракта // Здоровье ребенка. — 2009. — № 2 (17). — С. 120-125.

2. Барабой В.А. Стресс: природа, биологическая роль, механизмы, исходы. — К., 2006. — 424 с.

3. Донцов В.И. Активные формы кислорода как система: значение в физиологии, патологии и естественном старении / В.И. Донцов, В.Н. Крутько, Б.М. Мрикаев, С.В. Уханов // Труды ИСА РАН. — 2006. — Т. 19. — С. 51-69.

4. Ляхович В.В. Активированные кислородные метаболиты в монооксидазных реакциях / В.В. Ляхович, В.А. Вавилин, Н.К. Зенков, Е.Б. Меньщикова // Бюллетень СО РАМН. — 2005. — № 4 (118). — С. 7-12.

5. Apel K. Reactive oxygen species: metabolism, oxidative stress, and signal transduction / K. Apel, H. Hirt // Annu Rev. Plant Biol. 2004; 55: 373-99. doi: 10.1146/annurev.arplant.55.031903.141701.

6. Bartz R.R. Clinical review: oxygen as a signaling molecule / R.R. Bartz, C.A. Piantadosi // Crit. Care. 2010; 14(5): 234. doi: 10.1186/cc9185.

7. Bedard K. NOX family NADPH oxidases: not just in mammals / K. Bedard, B. Lardy, K.H. Krause // Biochimie. 2007 Sep; 89(9): 1107-12. doi:10.1016/j.biochi.2007.01.012.

8. Brand M.D. The sites and topology of mitochondrial superoxide production // Exp. Gerontol. 2010 Aug; 45(7–8): 466-72. doi: 10.1016/j.exger.2010.01.003.

9. Brown D.I. Nox proteins in signal transduction / D.I. Brown, K.K. Griendling // Free Radic. Biol. Med. 2009 Nov 1; 47(9): 1239-53. doi: 10.1016/j.freeradbiomed.2009.07.023.

10. Buettner G.R. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide // Anticancer Agents Med. Chem. 2011 May 1; 11(4): 341-6. PMCID: PMC3131414.

11. Cadet J. Measurement of oxidatively generated base damage in cellular DNA / J. Cadet, T. Douki, J.L. Ravanat // Mutat. Res. 2011 Jun 3; 711(1–2): 3-12. doi: 10.1016/j.mrfmmm.2011.02.004.

12. Cadet J. Oxidatively generated base damage to cellular DNA / J. Cadet, T. Douki, J.L. Ravanat // Free Radic. Biol. Med. 2010 Jul 1; 49(1): 9-21. doi: 10.1016/j.freeradbiomed.2010.03.025.

13. Cathcart M.K. Regulation of Superoxide Anion Production by NADPH Oxidase in Monocytes/Macrophages // Arterioscler. Thromb. Vasc. Biol. 2004 Jan; 24(1): 23-8. doi: 10.1161/01.ATV.0000097769.47306.12.

14. Clark R.A. Mechanisms of Activation of NADPH Oxidases / R.A. Clark, T.K. Epperson, A.J. Valente // Jpn J. Infect. Dis. 2004 Oct; 57(5): S22-3.

15. Comhair S.A. Antioxidant responses to oxidant-mediated lung diseases / S.A. Comhair, S.C. Erzurum // Am. J. Physiol. Lung Cell. Mol. Physiol. 2002 Aug; 283(2): L246-55. doi: 10.1152/ajplung.00491.2001.

16. Dekhuijzen P.N. The role for N-acetylcysteine in the management of COPD / P.N. Dekhuijzen, W.J. van Beurden // Int. J. Chron. Obstruct. Pulmon. Dis. 2006; 1(2): 99-106. PMCID: PMC2706612.

17. Fang F.C. Antimicrobial actions of reactive oxygen species // MBio. 2011 Sep 6; 2(5). pii: e00141-11. doi: 10.1128/mBio.00141-11.

18. Finkel T. Signal transduction by reactive oxygen species // J. Cell Biol. 2011 Jul 11; 194(1): 7-15. doi: 10.1083/jcb.201102095.

19. Fischer H. Mechanisms and function of DUOX in epithelia of the lung // Antioxid. Redox Signal. 2009 Oct; 11(10): 2453-65. doi: 10.1089/ARS.2009.2558.

20. Groemping Y. Activation and assembly of the NADPH oxidase: a structural perspective / Y. Groemping, K. Rittinger // Biochem. J. 2005 Mar 15; 386 (Pt 3): 401-16. PMCID: PMC1134858

21. Hordijk P.L. Regulation of NADPH Oxidases: The Role of Rac Proteins // Circ. Res. 2006 Mar 3; 98(4): 453-62. doi: 10.1161/01.RES.0000204727.46710.5e.

22. Jiang J. TGF-2 reduces nitric oxide synthase mRNA through a ROCK-dependent pathway in airway epithelial cells / J. Jiang, S.C. George // Am. J. Physiol. Lung Cell. Mol. Physiol. 2011 Sep; 301(3): L361-7. doi: 10.1152/ajplung.00464.2010.

23. Jobsis Q. Hydrogen peroxide in exhaled air of healthy children: reference values / Q. Jobsis, H.C. Raatgeep, S.L. Schellekens, W.C. Hop, P.W. Hermans, J.C. de Jongste // Eur. Respir. J. 1998 Aug; 12(2): 483-5. PMID: 9727806.

24. Kanta J. The role of hydrogen peroxide and other reactive oxygen species in wound healing // Acta Medica (Hradec Kralove). 2011; 54(3): 97-101. PMID: 22250477.

25. Katsuyama M. NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles // J. Pharmacol. Sci. 2010; 114(2): 134-46. doi: http://dx.doi.org/10.1254/jphs.10R01CR.

26. Kottová M. Oxidative stress and its role in respiratory diseases / M. Kottová, J. Pourová, M. Voprsalová // Ceska Slov. Farm. 2007 Oct; 56(5): 215-9.

27. Lambeth J.D. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy // Free Radic. Biol. Med. 2007 Aug 1; 43(3): 332-47. doi: 10.1016/j.freeradbiomed.2007.03.027

28. Lambeth J.D. Novel homologs of gp91phox / J.D. Lambeth, G. Cheng, R.S. Arnold, W.A. Edens // Trends Biochem. Sci. 2000 Oct; 25(10): 459-61. DOI: http://dx.doi.org/10.1016/S0968-0004(00)01658-3

29. Lang J.D. Oxidant-Antioxidant Balance in Acute Lung Injury / J.D. Lang, P.J. McArdle, P.J. O’Reilly, S. Matalon // Chest. 2002 Dec; 122 (6 Suppl.): 314S-320S. doi:10.1378/chest.122.6_suppl.314S

30. Lassègue B. NADPH oxidases: functions and pathologies in the vasculature / B. Lassègue, K.K. Griendling // Arterioscler. Thromb. Vasc. Biol. 2010 Apr; 30(4): 653-61. doi: 10.1161/ATVBAHA.108.181610.

31. Martin T.R. Recognition of bacterial endotoxin in the lungs // Am. J. Respir. Cell Mol. Biol. 2000 Aug; 23(2): 128-32. doi: 10.1165/ajrcmb.23.2.f189.

32. Migdal C. Espèces réactives de l’oxygène et stress oxidant / C. Migdal, M. Serres // Med. Sci. (Paris). 2011 Apr; 27(4): 405-12. doi: 10.1051/medsci/2011274017.

33. Nagaraja C. Hydrogen peroxide in exhaled breath condensate: A clinical study / C. Nagaraja, B.L. Shashibhushan, Sagar, M. Asif, P.H. Manjunath // Lung India. 2012 Apr; 29(2): 123-7. doi: 10.4103/0970-2113.95303.

34. Petry A. Receptor activation of NADPH oxidases / A. Petry, M. Weitnauer, A. Görlach // Antioxid. Redox Signal. 2010 Aug 15; 13(4): 467-87. doi: 10.1089/ars.2009.3026.

35. Rhee S.G. Cellular Regulation by Hydrogen Peroxide / S.G. Rhee, T.-S. Chang, Y.S. Bae, S.-R. Lee, S.W. Kang // J. Am. Soc. Nephrol. 2003 Aug; 14(8, Suppl. 3): S211-5. doi: 10.1097/01.ASN.0000077404.45564.7E.

36. Rigoulet M. Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling / M. Rigoulet, E.D. Yoboue, A. Devin // Antioxid. Redox Signal. 2011 Feb 1; 14(3): 459-68. doi: 10.1089/ars.2010.3363.

37. Schwarzer C. NADPH oxidase-dependent acid production in airway epithelial cells / C. Schwarzer, T.E. Machen, B. Illek, H. Fischer // J. Biol. Chem. 2004 Aug 27; 279(35): 36454-61. doi: 10.1074/jbc.M404983200

38. Shiose A. A novel superoxide-producing NAD(P)H oxidase in kidney / A. Shiose, J. Kuroda, K. Tsuruya, M. Hirai, H. Hirakata, S. Naito, M. Hattori, Y. Sakaki, H. Sumirnoto // J. Biol. Chem. 2001 Jan 12; 276(2): 1417-23. doi: 10.1074/jbc.M007597200.

39. Skólmowska M. Enzymosomy antyoksydacyjne — właściwości i zastosowanie / M. Skólmowska, M. Kmieć // Postepy Hig. Med. Dosw. (online). — 2011. — T. 65. — S. 640-644.

40. Van der Vliet A. NADPH oxidases in lung biology and pathology: host defense enzymes, and more // Free Radic. Biol. Med. 2008 Mar 15; 44(6): 938-55. doi: 10.1016/j.freeradbiomed.2007.11.016..

41. Van der Vliet A. Oxidants, nitrosants and the lung / A. Van der Vliet, C. E. Cross // Am. J. Med. 2000 Oct 1; 109(5): 398-421. doi: http://dx.doi.org/10.1016/S0002-9343(00)00479-4.

42. Werner E. GTPases and reactive oxygen species: switches for killing and signaling // J. Cell. Sci. 2004 Jan 15; 117(Pt 2): 143-53. doi: 10.1242/jcs.00937.

43. Zabłocka A. Dwa oblicza wolnych rodników tlenowych / A. Zabłocka, M. Janusz // Postepy Hig. Med. Dosw. (Online). — 2008. — T. 62. — S. 118-124.


Back to issue