Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ
день перший
день другий

АКУШЕРИ ГІНЕКОЛОГИ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ
день перший
день другий

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

"Child`s Health" 3 (63) 2015

Back to issue

Механизм действия активированных кислородсодержащих метаболитов в респираторном тракте (часть 1)

Authors: Абатуров А.Е. — ГУ «Днепропетровская медицинская академия Министерства здравоохранения Украины»; Волосовец А.П. — Национальный медицинский университет им. А.А. Богомольца, г. Киев

Categories: Pediatrics/Neonatology

Sections: Specialist manual

print version


Summary

В обзоре даны современные представления об антимикробном механизме действия активированных кислородсодержащих метаболитов в респираторном тракте.

В огляді надані сучасні уявлення про антимікробний механізм дії активованих кисневмісних метаболітів у респіраторному тракті.

The review provides the current understanding of antimicrobial mechanism of action of activated oxygen-containing metabolites in the respiratory tract.


Keywords

активированные кислородсодержащие метаболиты, заболевания органов дыхания.

активовані кисневмісні метаболіти, захворювання органів дихання.

activated oxygen-containing metabolites, respiratory diseases.

Статья опубликована на с. 122-126

 

Введение

На протяжении длительного периода изучения активированных кислородсодержащих метаболитов (АКМ) единственно полезным для макроорганизма их физиологическим эффектом считалось бактерицидное действие [2]. В последние годы появились доказательства, что АКМ являются внутриклеточными мессенджерами, которые играют важнейшую роль в регуляции активности внутриклеточных сигнальных молекулярных структур, модулирующих генную транскрипцию, скорость клеточной пролиферации, канализированность цитодифференцировки, характер клеточных реакций, процессы воспаления, апоптоза [9, 30].

Мессенджерная активность АКМ

В настоящее время идентифицированы бактериальные редокс-сенсоры (OxyR, SoxR редокс-чувствительные факторы транскрипции, молекулы шаперона Hsp33, FNR датчик кислорода и др.). Молекулы редокс-сенсоров характеризуются структурными особенностями, которые позволяют им «ощущать» конкретные АКМ и передавать возбуждение компонентам внутриклеточных сигнальных путей. В процессе эволюции простые бактериальные редокс-сенсоры были усовершенствованы или заменены на более специализированные протеины, такие как тиоловые пероксидазы дрожжей (ферменты, принадлежащие к семейству пероксиредоксинов или глутаредоксинов), факторы транскрипции Yap1 и Rap2.4a. У млекопитающих основными редокс-сенсорами являются: фактор транскрипции, индуцируемый гипоксией (HIF); ядерный фактор 2, подобный эритроидному деривату-2 (NRF-2); хлоридный внутриклеточный канал 2-го типа (chloride intracellular channel 2 — CLIC-2); рецептор-зависимый катионный канал переходного потенциала субсемейства M (transient receptor potential cation channel, subfamily M — TRPM); гомолог фосфатазы и тензина (phosphatase and tensin homolog — PTEN); рецептор продуктов конечного гликозилирования (receptor for advanced glycation endproducts — RAGE); протеин группы высокой мобильности бокс-1 (HMGB-1/амфотерин) (рис. 1) [26, 33].

Спектр пато- или физиологического действия АКМ во многом зависит от уровня их продукции. Умеренное увеличение внутриклеточного уровня cупероксидного анион-радикала (O2) приводит к образованию перекиси водорода (H2O2) в микромолярных концентрациях, что обусловливает пролиферацию различных типов клетки. В многочисленных исследованиях последних лет было установлено, что Н2О2 является одной из ключевых молекул внутриклеточной сигнализации, которая участвует в регуляции метаболизма клетки и является посредником митогенного эффекта активации рецепторов факторов роста. АКМ регулируют аутофагию, проницаемость ионов кальция мембран митохондрии, высвобождение кальция из эндоплазматического ретикулума. Чуть в более высоких концентрациях Н2О2 вызывает «арест» клеточного цикла или апоптоз клетки, а в милимолярных концентрациях может стать причиной выраженного окислительного повреждения внутриклеточных структур и некротической гибели клетки [13, 37].

Деструктивное действие АКМ

Чрезмерная продукция АКМ может стать причиной гибели эпителиоцитов и других клеток легочной ткани при острых и хронических заболеваниях органов дыхания. АКМ-индуцированное поражение ткани респираторного тракта при различных воспалительных заболеваниях является одним из основных патогенетических факторов, обусловливающих как тяжесть, так и течение болезни [3, 14, 15]. В основе повреждающего действия АКМ лежит окисление липидов, протеинов ДНК. Гидроксильные радикалы обусловливают перекисное окисление липидов, протекающее по типу цепной реакции, цитоплазматической мембраны и любых внутриклеточных органелл. Свободные аминокислоты и протеины также являются мишенью для окислительного повреждения. Окисление боковых цепей молекул аминокислот приводит к образованию карбонильных групп (альдегиды и кетоны). К оксидантной атаке особенно чувствительны такие аминокислоты, как пролин, аргинин, лизин и треонин. Окисление тиоловых групп цистеиновых аминокислотных остатков может привести к образованию дисульфидных связей и возникновению аномальной структуры протеина. Нарушение структуры белка приводит не только к потере им функциональной активности, но и к агрегации белков и гибели клеток. ДНК является основным субстратом супероксид анион-радикала. Окисление сахарных остатков нуклеотидов может стать причиной обрыва нити ДНК, окисление гистоновых белков протекает с формированием перекрестных связей, которые нарушают декомпактизацию хроматина и, как следствие, транскрипцию генов и репарацию ДНК. Влияние АКМ может привести к возникновению мутаций. Особенно уязвима митохондриальная ДНК. Повреждение митохондриальной ДНК даже при физиологических условиях происходит в пять-десять раз чаще, чем ядерной ДНК [6].

Примеры действия АКМ на липиды, протеины и ДНК приведены ниже.

Повреждение липидов, белков и ДНК активными кислородсодержащими метаболитами [31]

Окислительное повреждение липидов:

— Нарушение функционирования и целостности липидного бислоя клеточной мембраны.

Окислительное повреждение протеинов:

— Фрагментация пептидной цепи.

—  Агрегирование продуктов деградации сшитых продуктов.

— Изменение электрического заряда молекулы.

— Повышение чувствительности к протеолитическим ферментам.

— Сайт-специфическая модификация аминокислот (аминокислоты отличаются по своей восприимчивости к действию АКМ).

— Окисление специфических аминокислот «отмечает» протеины для деградации специфическими протеазами.

— Окисление Fe-S-центров.

Окислительное повреждение ДНК:

— Делеция, транслокация.

— Деградация, однонитевые поломки.

— Образование сшивок белков и ДНК.

Процессы окисления протеинов, липидов и нуклеиновых кислот избыточными концентрациями АКМ в респираторном тракте подробно рассмотрены в обзорах Irfan Rahman [25], Marian Valko и соавт. [29], Jean Cadet и соавт. [7, 8], Gabriella Leonarduzzi и соавт. [19], Zsolt Radak и соавт. [1].

Антибактериальное действие АКМ

При инфекционном поражении респираторного тракта происходит возбуждение эпителиоцитов, альвеолярных макрофагов и нейтрофилов, которое характеризуется значительным увеличением концентрации АКМ как во внутритканевом пространстве, так и в бронхоальвеолярной жидкости [22]. Киллинг микроорганизмов АКМ осуществляется за счет непосредственного окисления молекулярных структур инфекционных агентов или опосредованно через активацию нейтрофильных протеаз супероксидным анионом радикалом и перекисью водорода [24, 35].

Функциональное взаимодействие АКМ и нейтрофильных протеаз увеличивает скорость эрадикации инфекционных агентов в нейтрофилах, находящихся в состоянии покоя, субъединицы gp91phox и p22phox преимущественно локализованы в мембране вторичных гранул. Во время активации нейтрофилов происходит слияние первичных (азурофильных) и вторичных гранул с фагоцитарной вакуолью, в которой компоненты их содержимого взаимодействуют между собой. Одним из эффектов этого взаимодействия является активация нейтрофильных сериновых протеаз, содержащихся в первичных гранулах [18]. Представляет интерес тот факт, что мыши с дефицитом нейтрофильной эластазы отличаются склонностью к развитию септического процесса при инфицировании грамотрицательными бактериями, в то время как катепсин-G (CG)-дефицитные мыши достаточно устойчивы к бактериальным инфектам. Оценивая вклад НАДФH-оксидазы и сериновых протеаз в антибактериальную защиту организма, R. Robert Vethanayagam и соавт. [28] установили, что НАДФH-оксидаза является несомненно более значимым компонентом этого процесса.

Супероксидный анион-радикал (O2)

В настоящее время существуют различные и в некоторой степени противоречивые данные об участии супероксидного анион-радикала (O2–•) в непосредственном киллинге микроорганизмов. Однако было показано, что при низких уровнях рН O2–• может быть прямым эффективным участником бактериального киллинга [24].

Перекись водорода

Перекись водорода, окисляя детерминанты клеточной стенки, играет важнейшую роль в киллинге бактерий. Во внутреннем пространстве фагосомы отмечается высокий уровень содержания АКМ. И хотя этот уровень концентрации АКМ ниже, чем те, которые необходимы для проявления антибактериального действия в условиях in vitro, в условиях фагосомы он достаточно эффективен. Считают, что концентрация АКМ в пространстве фагосомы распределена неравномерно, основное их содержание сосредоточено в непосредственной близости от инфекционного агента [12]. Используя H2O2, миелопероксидаза (MPO) нейтрофилов при физиологических концентрациях галоген-анионов генерирует мощный окислитель — гипохлорную кислоту, которая как сама, так и образующиеся при дальнейших ее преобразованиях радикалы обладают выраженным бактерицидным и противогрибковым действием. Определенную роль в бактериальном киллинге также играют производные взаимодействия лактопероксидазы с анионом тиоцианита и анионом йода.

Пероксинитрит

Супероксидный анион-радикал активно реагирует с монооксидом азота, образуя высокореактивный пероксинитрит, который обладает мощным бактерицидным действием [23].

Инактивация факторов вирулентности инфекционных патогенов

Показано, что АКМ не только оказывают бактерицидное действие, но и инактивируют различные факторы вирулентности патогенных микроорганизмов. Так, показано, что окисление АМК метионинового остатка в С-терминальном регионе молекулы бактериальных аутоиндукторов ингибирует активность кворум сенсинга, предупреждая организацию бактериальной биопленки [4, 20].

Регуляция рН и концентрации ионов в фагосоме

Генерируемые NOX2 АКМ, изменяя внутрифагосомальный уровень рН, концентрации ионов водорода и калия, обусловливают гибель патогенных микроорганизмов. Активация NOX2 приводит к увеличению концентрации O2–• в фагосомах и как следствие — к повышению регионального уровня рН. Emer P. Reeves и соавт. [27] показали, что повышение концентрации O2–• в фаголизосоме сопровождается увеличением как концентрации ионов K+, так и уровня pH. Активация NOX2 ассоциирована с компенсаторным усилением притока ионов H+ и K+ в фагосому, что изменяет осмолярность среды и увеличивает аффинность катионных протеаз, способствуя повышению активности бактериального киллинга. Щелочные условия и высокий уровень концентрации K+ усиливают протеолитическую деятельность эластазы и катепсина G — мощных эффекторов процесса бактериального киллинга (рис. 2) [4].

Участие АКМ в организации нейтрофильных внеклеточных ловушек

Под влиянием АКМ нейтрофилы во время инфекционного процесса «выбрасывают» сетевидные образования, которые получили название нейтрофильных внеклеточных ловушек — НВЛ (NET — Neutrophil Extracellular Traps) [32]. Выброс НВЛ сопровождается гибелью нейтрофилов — НВЛозом и высвобождением большого количества различных биологически активных веществ, в том числе и обладающих антибактериальной, антигрибковой и противовирусной активностью [21]. Также НВЛ образуются при активации нейтрофилов форболмиристатацетатом, IL-8/CXCL8 и некоторыми РАМР, в частности LPS. НВЛ представляют собой сети из гладких волокон с диаметром 15–17 нм, которые состоят из деконденсированного хроматина и содержат разнообразные пептиды и антимикробные факторы (BPI, L37, адреномедуллин, азуроцидин, гистоны Н1, Н2А, H2B, H3, H4, желатиназа, кальпротектин, каталаза, катепсин G, лактоферрин, лизоцим, MPO, миозин-9, нейтрофильная эластаза). ДНК является основным структурным компонентом НВЛ. Объемная сетевая структура НВЛ обеспечивает фиксацию патогенов, а высокая локальная концентрация антимикробных веществ — гибель микроорганизмов. НВЛ-ассоциированный бактериальный киллинг является высокоэффективным механизмом уничтожения грамположительных и грамотрицательных бактерий, в том числе и таких респираторно-тропных инфекционных агентов, как Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes [5, 11, 34, 36].

Считают, что нарушение формирования АКМ-индуцированного НВЛ-ассоциированного внеклеточного бактериального киллинга является важнейшим звеном патогенеза системного инфекционного процесса у новорожденных [16, 17].

 


Bibliography

1. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA / Z. Radak, Z. Zhao, S. Goto, E. Koltai // Mol. Aspects Med. — 2011 Aug. — 32(4–6). — 305-15. — doi: 10.1016/j.mam.2011.10.010.

2. Babior B.M. Phagocytes and oxidative stress // Am. J. Med. — 2000 Jul. — 109(1). — 33-44. — doi: http://dx.doi.org/10.1016/S0002-9343(00)00481-2.

3. Bae Y.S., Oh H., Rhee S.G., Yoo Y.D. Regulation of reactive oxygen species generation in cell signaling // Mol. Cells. — 2011 Dec. — 32(6). — 491-509. — doi: 10.1007/s10059-011-0276-3.

4. Bedard K., Lardy B., Krause K.H. NOX family NADPH oxidases: not just in mammals // Biochimie. — 2007 Sep. — 89(9). — 1107-12. — doi: 10.1016/j.biochi.2007.01.012.

5. Brinkmann V., Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs // Nat. Rev. Microbiol. — 2007 Aug. — 5(8). — 577-82. — doi: 10.1038/nrmicro1710.

6. Burton G.J., Jauniaux E. Oxidative stress // Best Pract. Res. Clin. Obstet. Gynaecol. — 2011 Jun. — 25(3). — 287-99. — doi: 10.1016/j.bpobgyn.2010.10.016.

7. Cadet J., Douki T., Ravanat J.L. Oxidatively generated base damage to cellular DNA // Free Radic. Biol. Med. — 2010, Jul 1. — 49(1). — 9-21. — doi: 10.1016/j.freeradbiomed.2010.03.025.

8. Cadet J., Douki T., Ravanat J.L. Oxidatively generated damage to cellular DNA by UVB and UVA radiation // Photochem. Photobiol. — 2015 Jan — Feb. — 91(1). — 140-55. — doi: 10.1111/php.12368.

9. Ciencewicki J., Trivedi S., Kleeberger S.R. Oxidants and the pathogenesis of lung diseases // J. Allergy Clin. Immunol. — 2008 Sep. — 122(3). — 456-68; quiz 469-70. — doi: 10. 1016/j.jaci.2008.08.004.

10. DeCoursey T.E. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes // Physiology (Bethesda). — 2010 Feb. — 25(1). — 27-40. — doi: 10.1152/physiol.00039.2009.

11. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality / Remijsen Q., Kuijpers T.W., Wirawan E., Lippens S., Vandenabeele P., Vanden Berghe T. // Cell. Death Differ. — 2011 Apr. — 18(4). — 581-8. — doi: 10.1038/cdd.2011.1.

12. Fang F.C. Antimicrobial actions of reactive oxygen species // MBio. — 2011, Sep 6. — 2(5). — pii: e00141-11. — doi: 10.1128/mBio.00141-11.

13. Hawkes W.C., Alkan Z. Regulation of redox signaling by selenoproteins // Biol. Trace Elem. Res. — 2010 Jun. — 134(3). — 235-51. — doi: 10.1007/s12011-010-8656-7.

14. Hyperoxia sensing: from molecular mechanisms to significance in disease / A. Gore, M. Muralidhar, M.G. Espey, K. Degenhardt, L.L. Mantell // J. Immunotoxicol. — 2010 Oct — Dec. — 7(4). — 239-54. — doi: 10.3109/1547691X.2010.492254.

15. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells / T.E. Zaher, E.J. Miller, D.M. Morrow, M. Javdan, L.L. Mantell // Free Radic. Biol Med. — 2007, Apr 1. — 42(7). — 897-908. — doi: 10.1016/j.freeradbiomed.2007.01.021.

16. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates / C.C. Yost, M.J. Cody, E.S. Harris, N.L. Thornton, A.M. McInturff, M.L. Martinez, N.B. Chandler, C.K. Rodesch, K.H. Albertine, C.A. Petti, A.S. Weyrich, G.A. Zimmerman // Blood. — 2009, Jun 18. — 113(25). — 6419-27. — doi: 10.1182/blood-2008-07-171629.

17. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals / J. Hazeldine, P. Harris, I.L. Chapple, M. Grant, H. Greenwood, A. Livesey, E. Sapey, J.M. Lord // Aging Cell. — 2014 Aug. — 13(4). — 690-8. — doi: 10.1111/acel.12222

18. Killing activity of neutrophils is mediated through activation of proteases by K+ flux / E.P. Reeves, H. Lu, H.L. Jacobs, C.G. Messina, S. Bolsover, G. Gabella, E.O. Potma, A. Warley, J. Roes, A.W. Segal // Nature. — 2002, Mar 21. — 416(6878). — 291-7. — doi:10.1038/416291a.

19. Leonarduzzi G., Sottero B., Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited // Pharmacol. Ther. — 2010 Nov. — 128(2). — 336-74. — doi: 10.1016/j.pharmthera.2010.08.003.

20. NADPH oxidases in lung health and disease / K. Bernard, L. Hecker, T.R. Luckhardt, G. Cheng, V.J. Thannickal // Antioxid. Redox Signal. — 2014, Jun 10. — 20(17). — 2838-53. — doi: 10.1089/ars.2013.5608.

21. Neutrophil extracellular traps: how to generate and visualize them / V. Brinkmann, B. Laube, U. Abu Abed, C. Goosmann, A. Zychlinsky // J. Vis. Exp. — 2010, Feb 24. — 36. — pii: 1724. — doi: 10.3791/1724.

22. Oxidant-Antioxidant Balance in Acute Lung Injury / J.D. Lang, P.J. McArdle, P.J. O’Reilly, S. Matalon // Chest. — 2002 Dec. — 122(6 Suppl). — 314S-320S. — doi:10.1378/chest.122.6_suppl.314S.

23. Peroxynitrite-An ugly biofactor? / P. Ascenzi, A. di Masi, C. Sciorati, E. Clementi // Biofactors. — 2010 Jul — Aug. — 36(4). — 264-73. — doi: 10.1002/biof.103.

24. Rada B., Leto T.L. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases // Contrib. Microbiol. — 2008. — 15. — 164-87. — doi: 10.1159/000136357.

25. Rahman I. Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases // J. Biochem. Mol. Biol. — 2003, Jan 31. — 36(1). — 95-109.

26. Redox modulation of HMGB1-related signaling / C. Janko, M. Filipović, L.E. Munoz, C. Schorn, G. Schett, I. Ivanović-Burmazović, M. Herrmann // Antioxid. Redox Signal. — 2014, Mar 1. — 20(7). — 1075-85. — doi: 10.1089/ars.2013.5179.

27. Reeves M.A., Hoffmann P.R. The human selenoproteome: recent insights into functions and regulation // Cell. Mol. Life Sci. — 2009 Aug. — 66(15). — 2457-78. — doi: 10.1007/s00018-009-0032-4.

28. Role of NADPH oxidase versus neutrophil proteases in antimicrobial host defense / R.R. Vethanayagam, N.G. Almyroudis, M.J. Grimm, D.C. Lewandowski, C.T. Pham, T.S. Blackwell, R. Petraitiene, V. Petraitis, T.J. Walsh, C.F. Urban, B.H. Segal // PLoS One. — 2011. — 6(12). — e28149. — doi: 10.1371/journal.pone.0028149.

29. Role of oxygen radicals in DNA damage and cancer incidence / M. Valko, M. Izakovic, M. Mazur, C.J. Rhodes, J. Telser // Mol. Cell. Biochem. — 2004 Nov. — 266(1–2). — 37-56.

30. Rosanna D.P., Salvatore C. Reactive oxygen species, inflammation, and lung diseases // Curr. Pharm. Des. — 2012. — 18(26). — 3889-900. — doi: 10.2174/138161212802083716.

31. Scandalios J.G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses // Braz. J. Med. Biol. Res. — 2005 Jul. — 38(7). — 995-1014 // http://dx.doi.org/10.1590/S0100-879X2005000700003.

32. Singlet oxygen is essential for neutrophil extracellular trap formation / Y. Nishinaka, T. Arai, S. Adachi, A. Takaori-Kondo, K. Yamashita // Biochem. Biophys. Res. Commun. — 2011, Sep 16. — 413(1). — 75-9. — doi: 10.1016/j.bbrc.2011.08.052.

33. Tang D., Kang R., Zeh H.J. 3rd, Lotze M.T. High-mobility group box 1, oxidative stress, and disease // Antioxid. Redox Signal. — 2011, Apr 1. — 14(7). — 1315-35. — doi: 10.1089/ars.2010.3356.

34. Vorobjeva N.V., Pinegin B.V. Neutrophil extracellular traps: mechanisms of formation and role in health and disease // Biochemistry (Mosc.). — 2014 Dec. — 79(12). — 1286-96. — doi: 10.1134/S0006297914120025.

35. Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species // Nat. Chem. Biol. — 2008 May. — 4(5). — 278-86. — doi: 10.1038/nchembio.85.

36. Yam-Puc J.C., García-Marín L., Sánchez-Torres L.E. Trampas extracelulares de neutrífilos (NET), consecuencia de un suicidio cellular // Gac. Med. Mex. — 2012 Jan — Feb. — 148(1). — 68-75.

37. Ye Z.W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation // Biochim. Biophys. Acta. — 2014, Nov 15. — pii: S0304-4165(14)00387-0. — doi: 10.1016/j.bbagen.


Back to issue