Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.


Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

"Child`s Health" Том 12, №5, 2017

Back to issue

Development of the immune response in pneumonia due to Staphylococcus aureus (part 4)

Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

Categories: Pediatrics/Neonatology

Sections: Specialist manual

print version


Summary

У даній статті на підставі літературних джерел проаналізовано ключову роль хемокінів сімейств СС, СХС та антимікробних пептидів в елімінації Staphylococcus aureus. Докладно описані основні механізми антистафілококової активності кателіцидину LL-37 у розвитку імунної відповіді при пневмонії, викликаній Staphylococcus aureus.

В данной статье на основании литературных источников проанализирована ключевая роль хемокинов семейств СС, СХС и антимикробных пептидов в элиминации Staphylococcus aureus. Подробно описаны основные механизмы антистафилококковой активности кателицидина LL-37 в развитии иммунного ответа при пневмонии, вызванной Staphylococcus aureus.

In this article, based on the literature sources, the key role of chemokines of CC, CXS families and antimicrobial peptides in the elimination of Staphylococcus aureus is analyzed. The main mechanisms of the anti-staphylococcal activity of catelicidin LL-37 in the development of the immune response in pneumonia caused by Staphylococcus aureus are described in detail.


Keywords

пневмонія; Staphylococcus aureus; імунна відповідь; хемокіни; антимікробні пептиди; кателіцидини

пневмония; Staphylococcus aureus; иммунный ответ; хемокины; антимикробные пептиды; кателицидины

pneumonia; Staphylococcus aureus; immune response; chemokines; antimicrobial peptides; catelicidins


For the full article you need to subscribe to the magazine.


Bibliography

1. Al Alam D. Impaired interleukin-8 chemokine secretion by staphylococcus aureus-activated epithelium and T-cell chemotaxis in cystic fibrosis / D. Al Alam, G. Deslee, C. Tournois et al. // Am. J. Respir. Cell. Mol. Biol. 2010 Jun; 42(6): 644-50. doi: 10.1165/rcmb.2008-0021OC.
2. Andersson D.I. Mechanisms and consequences of bacterial resistance to antimicrobial peptides / D.I. Andersson, D. Hughes, J.Z. Kubicek-Sutherland et al. // Drug. Resist. Updat. 2016 May; 26: 43-57. doi: 10.1016/j.drup.2016.04.002. 
3. Arulkumaran N., Unwin R.J., Tam F.W.A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases // Expert Opin. Investig. Drugs. 2011 Jul; 20(7): 897-915. doi: 10.1517 /13543784.2011.578068.
4. Athale J. Nrf2 promotes alveolar mitochondrial bioge–nesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice / J. Athale, A. Ulrich, N.C. MacGarvey et al. // Free Radic. Biol. Med. 2012 Oct 15; 53(8): 1584-94. doi: 10.1016/j.freeradbiomed.2012.08.009.
5. Baudelet D. Involvement of the P2X7 purinergic receptor in inflammation: an update of antagonists series since 2009 and their promi–sing therapeutic potential / D. Baudelet, E. Lipka, R. Millet, A. Ghinet // Curr. Med. Chem. 2015; 22(6): 713-29. doi: 10.2174/0929867322666141212120926.
6. Braff M.H. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis / M.H. Braff, A.L. Jones, S.J. Skerrett, C.E. Rubens // J. Infect. Dis. 2007 May 1; 195(9): 1365-72. doi: 10.1086/513277.
7. Chen Q.X. Silencing airway epithelial cell-derived hepcidin exa–cerbates sepsis induced acute lung injury / Q.X. Chen, S.W. Song, Q.H. Chen et al. // Crit. Care. 2014 Aug 6; 18(4): 470. doi: 10.1186/s13054-014-0470-8.
8. Chen X. Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli / X. Chen, F. Niyonsaba, H. Ushio et al. // J. Dermatol. Sci. 2005 Nov; 40(2): 123-32. doi: 10.1016/j.jdermsci.2005.03.014.
9. Chen Y.G. Control of Methicillin-Resistant Staphylococcus aureus Pneumonia Utilizing TLR2 Agonist Pam3CSK4 / Y.G. Chen, Y. Zhang, L.Q. Deng et al. // PLoS One. 2016 Mar 14; 11(3): e0149233. doi: 10.1371/journal.pone.0149233.
10. Chotjumlong P. Involvement of the P2X7 purinergic receptor and c-Jun N-terminal and extracellular signal-regulated kinases in cyclooxygenase-2 and prostaglandin E2 induction by LL-37 / P. Chotjumlong, J.G. Bolscher, K. Nazmi et al. // J. Innate Immun. 2013; 5(1): 72-83. doi: 10.1159/000342928.
11. Cohen T.S. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections / T.S. Cohen, J.J. Hilliard, O. Jones-Nelson et al. // Sci Transl. Med. 2016 Mar 9; 8(329): 329ra31. doi: 10.1126/scitranslmed.aad9922.
12. Coorens M. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis / M. Coorens, M.R. Scheenstra, E.J. Veldhuizen, H.P. Haagsman // Sci Rep. 2017 Jan 19; 7: 40874. doi: 10.1038/srep40874.
13. Cowland J.B., Johnsen A.H., Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules // FEBS Lett. 1995 Jul 10; 368(1): 173-6. doi: 10.1016/0014-5793(95)00634-L.
14. Dean S.N., Bishop B.M., van Hoek M.L. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm acti–vity against Staphylococcus aureus // BMC Microbiol. 2011 May 23; 11: 114. doi: 10.1186/1471-2180-11-114.
15. Desouza I.A. Inflammatory mechanisms underlying the rat pulmonary neutrophil influx induced by airway exposure to staphylococcal enterotoxin type A / I.A. Desouza, C.F. Franco-Penteado, E.A. Camargo et al. // Br. J. Pharmacol. 2005 Nov; 146(6): 781-91. doi: 10.1038/sj.bjp.0706393.
16. Dorschner R.A. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides / R.A. Dorschner, B. Lopez-Garcia, A. Peschel et al. // FASEB J. 2006 Jan; 20(1): 35-42. doi: 10.1096/fj.05-4406com.
17. Fabisiak A., Murawska N., Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity // Pharmacol Rep. 2016 Aug; 68(4): 802-8. doi: 10.1016/j.pharep.2016.03.015.
18. Flick-Smith H.C. Assessment of antimicrobial peptide LL-37 as a post-exposure therapy to protect against respiratory tularemia in mice / Flick-Smith H.C., Fox M.A., Hamblin K.A. et al. // Peptides. 2013 May; 43: 96-101. doi: 10.1016/j.peptides.2013.02.024.
19. Ganz T. Antimicrobial polypeptides in host defense of the respiratory tract // J. Clin. Invest. 2002 Mar; 109(6): 693-7. doi: 10.1172/JCI15218.
20. Girnita A. Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor / A. Girnita, H. Zheng, A. Grönberg, L. Girnita, M. Ståhle // Oncogene. 2012 Jan 19; 31(3): 352-65. doi: 10.1038/onc.2011.239.
21. Golec M. Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide // Ann. Agric. Environ. Med. 2007; 14(1): 1-4. PMID: 17655171.
22. Gupta K., Subramanian H., Ali H. Modulation of host defense peptide-mediated human mast cell activation by LPS // Innate Immun. 2016 Jan; 22(1): 21-30. doi: 10.1177/1753425915610643.
23. Gutsmann T. Interaction between antimicrobial peptides and mycobacteria // Biochim. Biophys. Acta. 2016 May; 1858(5): 1034-43. doi: 10.1016/j.bbamem.2016.01.031.
24. Izykowski N. Organizing pneumonia in mice and men / N. Izykowski, M. Kuehnel, K. Hussein et al. // J. Transl. Med. 2016 Jun 10; 14(1): 169. doi: 10.1186/s12967-016-0933-6.
25. Jacobsen A.S., Jenssen H. Human cathelicidin LL-37 prevents bacterial biofilm formation // Future Med. Chem. 2012 Aug; 4(12): 1587-99. doi: 10.4155/fmc.12.97.
26. Joo H.S., Fu C.I., Otto M. Bacterial strategies of resistance to antimicrobial peptides // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2016 May 26; 371(1695). pii: 20150292. doi: 10.1098/rstb.2015.0292.
27. Kahlenberg J.M., Kaplan M.J. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease // J. Immunol. 2013 Nov 15; 191(10): 4895-901. doi: 10.4049/jimmunol.1302005.
28. Karadottir H. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells / H. Karadottir, N.N. Kulkarni, T. Gudjonsson et al. // Peer J. 2015 Dec 7; 3: e1483. doi: 10.7717/peerj.1483. 
29. Kim S.H., Lee H.Y., Jang Y.S. Expression of the ATP-gated P2X7 Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment // Immune Netw. 2015 Feb; 15(1): 44-9. doi: 10.4110/in.2015.15.1.44.
30. Kraus D., Peschel A.Staphylococcus aureus evasion of innate antimicrobial defense // Future Microbiol. 2008 Aug; 3(4): 437-51. doi: 10.2217/17460913.3.4.437.
31. Kubicek-Sutherland J.Z. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides / J.Z. Kubicek-Sutherland, H. Lofton, M. Vestergaard et al. // J. Antimicrob. Chemother. 2017 Jan; 72(1): 115-127. doi: 10.1093/jac/dkw381.
32. Kumagai S. Cathelicidin antimicrobial peptide inhibits fibroblast migration via P2X7 receptor signaling / S. Kumagai, K. Matsui, H. Kawaguchi et al. // Biochem. Biophys. Res. Commun. 2013 Aug 9; 437(4): 609-14. doi: 10.1016/j.bbrc.2013.07.010.
33. Labrousse D. Kineret®/IL-1ra blocks the IL-1/IL-8 inflammatory cascade during recombinant Panton Valentine Leukocidin-triggered pneumonia but not during S. aureus infection / D. Labrousse, M. Perret, D. Hayez et al. // PLoS One. 2014 Jun 6; 9(6): e97546. doi: 10.1371/journal.pone.0097546.
34. Lai H.C. The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis / H.C. Lai, Y.T. Horng, P.F. Yeh et al. // J. Microbiol. 2016 Nov; 54(11): 761-767. doi: 10.1007/s12275-016-6201-x.
35. Lishko V.K. Identification of Human Cathelicidin Peptide LL-37 as a Ligand for Macrophage Integrin αMβ2 (Mac-1, CD11b /CD18) that Promotes Phagocytosis by Opsonizing Bacteria / V.K. Lishko, B. Moreno, N.P. Podolnikova, T.P. Ugarova // Res. Rep. Biochem. 2016 Jul 7; 2016(6): 39-55. PMID: 27990411.
36. Mahlapuu M. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents / M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn // Front. Cell. Infect. Microbiol. 2016 Dec 27; 6: 194. doi: 10.3389/fcimb.2016.00194.
37. Midorikawa K. Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes / K. Midorikawa, K. Ouhara, H. Komatsuzawa et al. // Infect. Immun. 2003 Jul; 71(7): 3730-9. doi: 10.1128/IAI.71.7.3730-3739.2003.
38. Montreekachon P. Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts / P. Montreekachon, P. Chotjumlong, J.G. Bolscher et al. // J. Periodontal Res. 2011 Jun; 46(3): 327-37. doi: 10.1111/j.1600-0765.2011.01346.x.
39. Neumann A. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps / A. Neumann, E.T. Berends, A. Nerlich et al. // Biochem J. 2014 Nov 15; 464(1): 3-11. doi: 10.1042 /BJ20140778.
40. Nijnik A., Hancock R.E. The roles of cathelicidin LL-37 in immune defences and novel clinical applications // Curr. Opin. Hematol. 2009 Jan; 16(1): 41-7.
41. Overhage J. Human host defense peptide LL-37 prevents bacterial biofilm formation / J. Overhage, A. Campisano, M. Bains et al. // Infect Immun. 2008 Sep; 76(9): 4176-82. doi: 10.1128/IAI.00318-08.].
42. Punde T.H. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation / T.H. Punde, W.H. Wu, P.C. Lien et al. // Integr. Biol. (Camb). 2015 Feb; 7(2): 162-9. doi: 10.1039/c4ib00239c.
43. Ravensdale J. Efficacy of Antibacterial Peptides Against Peptide-Resistant MRSA Is Restored by Permeabilization of Bacteria Membranes / J. Ravensdale, Z. Wong, F. O’Brien, K. Gregg // Front. Microbiol. 2016 Nov 8; 7: 1745. doi: 10.3389/fmicb.2016.01745.
44. Rivas-Santiago B. Expression of cathelicidin LL-37 du–ring Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells / B. Rivas-San–tiago, R. Hernandez-Pando, C. Carranza et al. // Infect. Immun. 2008 Mar; 76(3): 935-41. doi: 10.1128/IAI.01218-07.
45. Rose C.E. Jr, Sung S.S., Fu S.M. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung // Microcirculation. 2003 Jun; 10(3-4): 273-88. doi: 10.1038/sj.mn.7800193.
46. Schrumpf J.A. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells / J.A. Schrumpf, G.D. Amatngalim, J.B. Veldkamp et al. // Am. J. Respir. Cell. Mol. Biol. 2017 Feb 23. doi: 10.1165/rcmb.2016-0289OC.
47. Scott M.G. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses / M.G. Scott, D.J. Davidson, M.R. Gold et al. // J. Immunol. 2002 Oct 1; 169(7): 3883-91. doi: 10.4049/jimmunol.169.7.3883.
48. Seiler F. Regulation and function of antimicrobial peptides in immunity and diseases of the lung / F. Seiler, P.M. Lepper, R. Bals, C. Beisswenger // Protein Pept. Lett. 2014 Apr; 21(4): 341-51. doi: 10.2174/09298665113206660100.
49. Sun J. The antimicrobial peptide LL-37 induces synthesis and release of cysteinyl leukotrienes from human eosinophils-implications for asthma / J. Sun, B. Dahlén, B. Agerberth, J.Z. Haeggström // Allergy. 2013 Mar; 68(3): 304-11. doi: 10.1111/all.12087.
50. Tang X. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance / X. Tang, D. Basavarajappa, J.Z. Haeggström, M. Wan // J. Immunol. 2015 Aug 1; 195(3): 1191-201. doi: 10.4049/jimmunol.1402845.
51. Tecle T., Tripathi S., Hartshorn K.L. Review: Defensins and cathelicidins in lung immunity // Innate Immun. 2010 Jun; 16(3): 151-9. doi: 10.1177/1753425910365734.
52. Tsou Y.A. Investigation of anti-infection mechanism of lactoferricin and splunc-1 / Y.A. Tsou, H.J. Huang, W.W. Lin, C.Y. Chen // Evid. Based Complement. Alternat. Med. 2014; 2014: 907028. doi: 10.1155/2014/907028.
53. Van der Does A.M. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature / A.M. van der Does, H. Beekhuizen, B. Ravensbergen et al. // J. Immunol. 2010 Aug 1; 185(3): 1442-9. doi: 10.4049/jimmunol.1000376.
54. Verjans E.T. Molecular mechanisms of LL-37-induced receptor activation: An overview / E.T. Verjans, S. Zels, W. Luyten et al. // Peptides. 2016 Nov; 85: 16-26. doi: 10.1016/j.peptides.2016.09.002.
55. Wan M. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages / M. Wan, van der Does A.M., X. Tang et al. // J. Leukoc Biol. 2014 Jun; 95(6): 971-81. doi: 10.1189/jlb.0513304.
56. Wan M. Cathelicidin LL-37 induces time-resolved release of LTB4 and TXA2 by human macrophages and triggers eicosanoid gene–ration in vivo / M. Wan, O. Soehnlein, X. Tang et al. // FASEB J. 2014 Aug; 28(8): 3456-67. doi: 10.1096/fj.14-251306.
57. Wang G. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments / G. Wang, B. Mishra, R.F. Epand, R.M. Epand // Biochim. Biophys. Acta. 2014 Sep; 1838(9): 2160-72. doi: 10.1016/j.bbamem.2014.01.016.
58. Wang X.Y. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus / X.Y. Wang, Z.X. Huang, Y.G. Chen et al. // PLoS One. 2015 Aug 28; 10(8): e0136888. doi: 10.1371/journal.pone.0136888. eCollection 2015.
59. Wolf A.J. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria / A.J. Wolf, A. Arruda, C.N. Reyes et al. // J. Immunol. 2011 Dec 1; 187(11): 6002-10. doi: 10.4049/jimmunol.1100232.
60. Wu H. The Origin, Expression, Function and Future Research Focus of a G Protein-coupled Receptor, Mas-related Gene X2 (MrgX2) / H. Wu, M. Zeng, E.Y. Cho, W. Jiang, O. Sha // Prog. Histochem. Cytochem. 2015 Jul; 50(1-2): 11-7. doi: 10.1016/j.proghi.2015.06.001.
61. Yamaguchi Y., Ouchi Y. Antimicrobial peptide defensin: identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases // Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2012; 88(4): 152-66. doi: 10.2183/pjab.88.152.
62. Zhang Y. The human Cathelicidin LL-37 induces MUC5AC mucin production by airway epithelial cells via TACE-TGF-α-EGFR pathway / Y. Zhang, M. Zhu, Z. Yang et al. // Exp. Lung. Res. 2014 Sep; 40(7): 333-42. doi: 10.3109/01902148.2014.926434.
63. Zhang Z., Cherryholmes G., Shively J.E. Neutrophil secon–dary necrosis is induced by LL-37 derived from cathelicidin // J. Leukoc. Biol. 2008 Sep; 84(3): 780-8. doi: 10.1189/jlb.0208086.
64. Zurek O.W., Pallister K.B., Voyich J.M. Staphylococcus aureus Inhibits Neutrophil-derived IL-8 to Promote Cell Death // J. Infect. Dis. 2015 Sep 15; 212(6): 934-8. doi: 10.1093/infdis /jiv124.

Similar articles

Development of the immune response in pneumonia due to Staphylococcus aureus (part 2)
Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Child`s Health" Том 12, №3, 2017
Date: 2017.06.30
Categories: Pediatrics/Neonatology
Sections: Specialist manual
Development of the immune response in pneumonia due to Staphylococcus aureus (part 5)
Authors: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

"Child`s Health" Том 12, №6, 2017
Date: 2017.11.15
Categories: Pediatrics/Neonatology
Sections: Specialist manual
The drugs based on molecular structures of antimicrobial peptides and their therapeutic potential  in the treatment of infectious diseases of the respiratory tract (part 1)
Authors: Абатуров А.Е.(1), Крючко Т.А.(2), Леженко Г.А.(3)
(1) — ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина
(2) — ВГУЗУ «Украинская медицинская стоматологическая академия», г. Полтава, Украина
(3) — Запорожский государственный медицинский университет, г. Запорожье, Украина

"Child`s Health" Том 12, №8, 2017
Date: 2018.01.29
Categories: Pediatrics/Neonatology
Sections: Specialist manual
Система неспецифической защиты  респираторного тракта. Хемокин CCL20/MIP-3a
Authors: Абатуров А.Е. Днепропетровская государственная медицинская академия
"Child`s Health" 6 (33) 2011
Date: 2013.01.04
Categories: Pediatrics/Neonatology

Back to issue